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Motivation

A first-order theory T has quantifier-free interpolation iff for every
quantifier free formulae ϕ, ψ such that T ⊢ ϕ → ψ, there exists a
quantifier free formula θ such that:

(i) T ⊢ ϕ → θ;

(ii) T ⊢ θ → ψ;

(iii) only variables occurring both in ψ and in ϕ occur in θ.

Quantifier-free interpolants are commonly used in formal verification
during abstraction-refinement cycles (since [McMillan CAV 03], [McMillan
TACAS 04], ...).
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Motivation

• In infinite-state model checking, the search of formulae is not finitely
bounded.
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Motivation

• In infinite-state model checking, the search of formulae is not finitely
bounded.

• Analyzing spurious error traces:

one can produce (via interpolation) formulae ϕ such that

• These formulae (and the atoms they contain) can contribute to the
refinement of the candidate loop invariant guaranteeing safety.
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General Interpolation Property

In verification theory, people uses the following stronger property for a
theory T :
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General Interpolation Property

In verification theory, people uses the following stronger property for a
theory T :

Definition

Let T be a theory in a signature Σ; we say that T has the general
quantifier-free interpolation property iff for every signature Σ′ (disjoint
from Σ) and for every ground Σ ∪ Σ′-formulæ ϕ, ψ such that T ⊢ ϕ → ψ

is T -unsatisfiable, there is a ground formula θ such that:

(i) T ⊢ ϕ → θ;

(ii) T ⊢ θ → ψ;

(iii) all predicate, constants and function symbols from Σ′

occurring in θ occur also in ϕ and in ψ.
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Uniform Interpolation Property

A considerable strengthening of plain interpolation is uniform
interpolation:
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Uniform Interpolation Property

A considerable strengthening of plain interpolation is uniform
interpolation:

Definition

We say that a theory T has uniform quantifier-free interpolation iff every
tuple of variables x and every quantifier-free formula ϕ there is a
quantifier-free formula θ not containing the x such that:

(i) T ⊢ ϕ → θ;

(ii) for every quantifier-free formula ψ not containing the x

T ⊢ ϕ → ψ ⇒ T ⊢ θ → ψ .
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Semantic Reformulations

Theorem

Let T be a universal theory. Then

(i) T has quantifier-free interpolation iff T has the
amalgamation property [B 75];

(ii) T has the general quantifier-free interpolation iff T has the
strong amalgamation property [BGR 14];

(iii) T has the uniform interpolation property iff T has a model
completion [M 95, CGGMR 20].
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Amalgamation

Definition

A universal theory T has the amalgamation property iff whenever we are
given models M1 and M2 of T and a common submodel A of them,
there exists a further model M of T endowed with embeddings
µ1 : M1 −→ M and µ2 : M2 −→ M whose restrictions to ♣A♣ coincide.
The amalgamation property is strong iff in addition we require that
µ1(a1) = µ2(a2) implies that a1 = a2 ∈ A.

M2 M✲✲
µ2

A M1
✲✲

❄

❄

❄

❄

µ1
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Equality Interpolating Property

Definition

A theory T is equality interpolating [YM 05, BGR 14] iff it has the
quantifier-free interpolation property and satisfies the following condition:

• for every quintuple x, y
1
, z1, y2

, z2 of tuples of variables and pair of
quantifier-free formulae δ1(x, z1, y1

) and δ2(x, z2, y2
) such that

δ1(x, z1, y1
) ∧ δ2(x, z2, y2

) ⊢T y
1

∩ y
2

̸= ∅ (1)

there exists a tuple v(x) of terms (called interpolating terms) such
that

δ1(x, z1, y1
) ∧ δ2(x, z2, y2

) ⊢T (y
1

∪ y
2
) ∩ v ̸= ∅ . (2)
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Equality Interpolating Property

Theorem (BGR 14)

A universal theory T has the strong amalgamation property (i.e. the
general interpolation property) iff it is equality interpolating. Equality
interpolating is a modular property (under signature disjointness and
stably-infiniteness assumptions).

Recall that T is stably infinite iff every model of T embeds into an infinite
model (this is equivalent, via compactness, to the standard definition).
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Equality Interpolating Property

Interpolating terms play an essential role in combined interpolation
algorithms (see below).

Example

EUF is equality interpolating: interpolating terms can be computed by
ground Knuth-Bendix completion (giving higher precedence to symbols to
be eliminated).

Example

Universal Theories with QE (like linear real/integer arithmetics, under
careful choice of the language) are equality interpolating: interpolating
terms come from ‘testing points’ lemmas.
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Equality Interpolating Property

Theorem (BGR 14)

Let T be a universal theory admitting quantifier-free interpolation and Σ
be a signature disjoint from the signature of T containing at least a unary
predicate symbol. Then, T ∪ EUF (Σ) has quantifier-free interpolation iff
T has the strong amalgamation property.
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Equality Interpolating Property

Theorem (BGR 14)

Let T be a universal theory admitting quantifier-free interpolation and Σ
be a signature disjoint from the signature of T containing at least a unary
predicate symbol. Then, T ∪ EUF (Σ) has quantifier-free interpolation iff
T has the strong amalgamation property.

Here you are the relevant modularity result:

Theorem (BGR 14)

Let T1 and T2 be two universal, stably infinite theories over disjoint
signatures Σ1 and Σ2. If both T1 and T2 have the strong amalgamation
property, then so does T1 ∪ T2. In particular, T1 ∪ T2 admits quantifier-free
interpolation.
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Equality Interpolating Property

Equality interpolating plays a role also for combined uniform interpolation,
but only in presence of convexity:
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Equality Interpolating Property

Equality interpolating plays a role also for combined uniform interpolation,
but only in presence of convexity:

Theorem (CGGMR IJCAR ’12)

Let T1 and T2 be two universal, stably infinite, strongly amalgamating
convex theories over disjoint signatures Σ1 and Σ2. If both T1 and T2 have
uniform interpolation, then so does T1 ∪ T2.
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Equality Interpolating Property

Equality interpolating plays a role also for combined uniform interpolation,
but only in presence of convexity:

Theorem (CGGMR IJCAR ’12)

Let T1 and T2 be two universal, stably infinite, strongly amalgamating
convex theories over disjoint signatures Σ1 and Σ2. If both T1 and T2 have
uniform interpolation, then so does T1 ∪ T2.

Recall that a theory T is said to be convex iff every finite set of literals
entailing (modulo T ) a disjunction of n > 0 equalities entails one of them.
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The theory ARext of arrays with extensionality

This is an important theory in verification:

• we have three sorts INDEX, ELEM, ARRAY;
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The theory ARext of arrays with extensionality

This is an important theory in verification:

• we have three sorts INDEX, ELEM, ARRAY;

• besides equality, we have function symbols

rd : ARRAY × INDEX −→ ELEM,

wr : ARRAY × INDEX × ELEM −→ ARRAY

• as axioms, we have

∀y, i, e. rd(wr(y, i, e), i) = e (3)

∀y, i, j, e. i ̸= j → rd(wr(y, i, e), j) = rd(y, j) (4)

∀x, y. x ̸= y → (∃i. rd(x, i) ̸= rd(y, i)) (5)
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The theory ARext of arrays with extensionality

Unfortunately, ARext does not have interpolation, witness the following
well-known counterexample (due to Ranjit Jhala).
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The theory ARext of arrays with extensionality

Unfortunately, ARext does not have interpolation, witness the following
well-known counterexample (due to Ranjit Jhala).

A := ¶a = wr(b, i, e)♢

B := ¶rd(a, j1) ̸= rd(b, j1), rd(a, j2) ̸= rd(b, j2), j1 ̸= j2♢
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The theory ARext of arrays with extensionality

Unfortunately, ARext does not have interpolation, witness the following
well-known counterexample (due to Ranjit Jhala).

A := ¶a = wr(b, i, e)♢

B := ¶rd(a, j1) ̸= rd(b, j1), rd(a, j2) ̸= rd(b, j2), j1 ̸= j2♢

Take ψ, ϕ to be the conjunctions of the literals from A,B, respectively.
Then ψ ∧ ϕ is ARext-unsatisfiable, but no quantifier-free interpolant exists
(notice that it should mention only a, b).
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The theory AX diff of arrays with diff

Since ARext does not have quantifier-free interpolants, we consider the
following variant, which we call AX diff. We add a further symbol in the
signature

diff : ARRAY × ARRAY −→ INDEX
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The theory AX diff of arrays with diff

Since ARext does not have quantifier-free interpolants, we consider the
following variant, which we call AX diff. We add a further symbol in the
signature

diff : ARRAY × ARRAY −→ INDEX

We replace the extensionality axiom (9) by its skolemization

∀x, y. x ̸= y → rd(x, diff(x, y)) ̸= rd(y, diff(x, y))
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The theory AX diff of arrays with diff

Since ARext does not have quantifier-free interpolants, we consider the
following variant, which we call AX diff. We add a further symbol in the
signature

diff : ARRAY × ARRAY −→ INDEX

We replace the extensionality axiom (9) by its skolemization

∀x, y. x ̸= y → rd(x, diff(x, y)) ̸= rd(y, diff(x, y))

Theorem

The (universal) theory AX diff has quantifier-free interpolation.
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Arrays with diff: amalgamation

The above theorem can be proved in various independent ways:

• semantically [BGT 12]: by showing amalgamation property;

• syntactically [BGT 12]: by rewriting techniques, via a specific
adaptation of Knuth-Bendix completion (called ‘Gaussian
completion’);

• syntactically [TW 16]: by hierarchical reduction to EUF (this is the
best method from the complexity viewpoint).
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Arrays with diff: strong amalgamation

We can strenghten the above result

S.Ghilardi Interpolation Properties for Arrays CIBD 2024 19 / 35



Arrays with diff: strong amalgamation

We can strenghten the above result

Theorem

The (universal) theory AX diff has general quantifier-free interpolation.
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Arrays with diff: strong amalgamation

Again this theorem can be proved:
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• syntactically [implicit in BGT 12]: by rewriting techniques.

The reason why rewriting techniques work is because they allow to
compute equality interpolating terms in the following way.

S.Ghilardi Interpolation Properties for Arrays CIBD 2024 20 / 35



Arrays with diff: strong amalgamation

Again this theorem can be proved:

• semantically [BGT 12]: by showing strong amalgamation property;

• syntactically [implicit in BGT 12]: by rewriting techniques.

The reason why rewriting techniques work is because they allow to
compute equality interpolating terms in the following way.

The completion of a pair of constraints δ(x, y) ∧ θ(x, z) produces a finite
disjunction

∨
i(δi(x, y) ∧ θi(x, z)) of constraints without mixed terms. So

whenever a disjunction of equalities is entailed, each disjunct entails a
single equality whose normal form is an equality of the kind t = t, with
shared t. Such t’s are the equality interpolating terms.

S.Ghilardi Interpolation Properties for Arrays CIBD 2024 20 / 35



Arrays with diff: uniform interpolation?

Theorem

The (universal) theory AX diff does not have uniform quantifier-free
interpolation.
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Arrays with diff: uniform interpolation?

Theorem

The (universal) theory AX diff does not have uniform quantifier-free
interpolation.

A counterexample is the formula

rd(c1, i) ̸= rd(c2, i) ∧ rd(d1, i) = rd(d2, i) (6)

An argument based on ultraproducts show that we cannot eliminate
uniformly the index variable i from it.
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Arrays with diff: uniform interpolation?

This is the schema of the argument. A uniform interpolant (supposing it
exists) is a formula UI(c1, c2, d1, d2) implied by (6) and having the
property that it implies all formulas - not containing i - implied by (6).
Consider the infinitely many formulae

ϕn ≡ c1 ∼n c2 →
n∨

j=1

rd(d1, diffn(c1, c2)) = rd(d2, diffn(c1, c2))

where c1 ∼n c2 says that c1 and c2 differ in at most n indices and diffn

is the iterated diff operator (both such constructs are quantifier-free
definable in AX diff).
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Arrays with diff: uniform interpolation?

One now builds models Mn such that Mn ̸♣= ϕn. Hence Mn ♣= ¬UI.
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Arrays with diff: uniform interpolation?

One now builds models Mn such that Mn ̸♣= ϕn. Hence Mn ♣= ¬UI.

Taking an untraproduct ΠDMn modulo a non principal ultrafilter, by  Los
theorem, we get ΠDMn ♣= ¬UI.
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Arrays with diff: uniform interpolation?

One now builds models Mn such that Mn ̸♣= ϕn. Hence Mn ♣= ¬UI.

Taking an untraproduct ΠDMn modulo a non principal ultrafilter, by  Los
theorem, we get ΠDMn ♣= ¬UI.

However, since it is possible to build an extension N ⊇ ΠDMn satisfying
(6), we get N ♣= UI (because (6) implies UI) and also ΠDMn ♣= UI,
because UI is quantifier-free and hence preserved by substructures.
Contradiction.
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A more expressive theory

• Plain diff operation is semantically undetermined, we want to
replace it with a more informative operation.
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differ (it returns the conventional value 0 is they are equal).
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differ (it returns the conventional value 0 is they are equal).

• This theory is parameterized on different ‘index theories’; the typical
index theory is Presburger arithmetic (with ‘division by n’ for all n in
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undefined value ‘⊥’ outside the interval [0, ♣a♣].
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A more expressive theory

• Plain diff operation is semantically undetermined, we want to
replace it with a more informative operation.

• To this aim we introduce [GGKN 23] the Theory of Arrays with

MaxDiff, where MaxDiff returns the biggest index where two arrays
differ (it returns the conventional value 0 is they are equal).

• This theory is parameterized on different ‘index theories’; the typical
index theory is Presburger arithmetic (with ‘division by n’ for all n in
the language).

• The theory has also a length operation ♣ − ♣: now an array a has the
undefined value ‘⊥’ outside the interval [0, ♣a♣].

• There is a remarkable gain in expressiveness, we show that
interpolation properties can be maintained.
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Index Theory

To locate our contribution, we need the notion of index theory.

Definition

An index theory TI is a mono-sorted theory (let INDEX be its sort)
satisfying the following conditions:

- TI is universal, stably infinite and has the general quantifier-free

interpolation property;

- TI has decidable quantifier-free fragment;

- TI extends the theory TO of linear orderings with a distinguished
element 0.
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Index Theory

To locate our contribution, we need the notion of index theory.

Definition

An index theory TI is a mono-sorted theory (let INDEX be its sort)
satisfying the following conditions:

- TI is universal, stably infinite and has the general quantifier-free

interpolation property;

- TI has decidable quantifier-free fragment;

- TI extends the theory TO of linear orderings with a distinguished
element 0.

Examples of index theories TI are TO itself, integer difference logic
integer linear arithmetic, and real linear arithmetics.
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ARD(TI): the Theory of Arrays with MaxDiff

Axioms: the axioms of TI , and

∀y, i, e, ♣wr(y, i, e)♣ = ♣y♣ (7)

∀y, i, wr(y, i,⊥) = y (8)

∀y, i, e, (e ̸= ⊥ ∧ 0 ≤ i ≤ ♣y♣) → rd(wr(y, i, e), i) = e (9)

∀y, i, j, e, i ̸= j → rd(wr(y, i, e), j) = rd(y, j) (10)

∀y, i, rd(y, i) ̸= ⊥ ↔ 0 ≤ i ≤ ♣y♣ (11)

∀y, ♣y♣ ≥ 0 (12)

∀y, diff(y, y) = 0 (13)

∀x, y, x ̸= y → rd(x, diff(x, y)) ̸= rd(y, diff(x, y)). (14)

∀x, y, i, diff(x, y) < i → rd(x, i) = rd(y, i). (15)

⊥ ≠ el. (16)
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ARD(TI): the Theory of Arrays with MaxDiff

The quantifier-free fragment of theis theory is decidable, because it can be
embedded into Bradley’s ’array property fragment’.
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ARD(TI): the Theory of Arrays with MaxDiff

The quantifier-free fragment of theis theory is decidable, because it can be
embedded into Bradley’s ’array property fragment’.
In fact atoms of the kind

a = b, ♣a♣ = k, diff(a, b) = j, wr(a, i, e) = b (17)

can be translated into universal formulae of TI ∪ EUF in Bradley’s
fragment (we call such formulae their B-translations).
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ARD(TI): the Theory of Arrays with MaxDiff

Theorem

The (universal) theory ARD(TI) has quantifier-free interpolation.

The theorem can be proved [GGKN 23]:
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ARD(TI): the Theory of Arrays with MaxDiff

Theorem

The (universal) theory ARD(TI) has quantifier-free interpolation.

The theorem can be proved [GGKN 23]:

• semantically: by showing amalgamation property;
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ARD(TI): the Theory of Arrays with MaxDiff

Theorem

The (universal) theory ARD(TI) has quantifier-free interpolation.

The theorem can be proved [GGKN 23]:

• semantically: by showing amalgamation property;

• syntactically: by hierarchical reduction to TI ∪ EUF .
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ARD(TI): the Theory of Arrays with MaxDiff

Theorem

The (universal) theory ARD(TI) has quantifier-free interpolation.

The theorem can be proved [GGKN 23]:

• semantically: by showing amalgamation property;

• syntactically: by hierarchical reduction to TI ∪ EUF .

In both cases, the proof follows the same schema as in the case of in the
case of AX diff, but details are much more challenging. We give some
qualitative account of the second proof.
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Interpolation for ARD(TI)

• Our problem: given two qf formulae A and B s.t. A ∧B is not
satisfiable (modulo ARD(TI)), to compute a qf formula C s.t.
ARD(TI) ♣= A → C, ARD(TI) ♣= C ∧B → ⊥ and s.t. C contains
only the free constants (called common constants) occurring both in
A and in B.
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• There are infinitely many common terms out of finitely many
common constants: iterated diff operations diffk are needed in
our algorithm to discover ‘implicit’ common facts.
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satisfiable (modulo ARD(TI)), to compute a qf formula C s.t.
ARD(TI) ♣= A → C, ARD(TI) ♣= C ∧B → ⊥ and s.t. C contains
only the free constants (called common constants) occurring both in
A and in B.

• There are infinitely many common terms out of finitely many
common constants: iterated diff operations diffk are needed in
our algorithm to discover ‘implicit’ common facts.

• E.g., diff2 returns the last-but-one index where a, b differ (0 if a, b
differ in at most one index), diff3 the last-but-two index etc.
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Interpolation for ARD(TI)

• Our problem: given two qf formulae A and B s.t. A ∧B is not
satisfiable (modulo ARD(TI)), to compute a qf formula C s.t.
ARD(TI) ♣= A → C, ARD(TI) ♣= C ∧B → ⊥ and s.t. C contains
only the free constants (called common constants) occurring both in
A and in B.

• There are infinitely many common terms out of finitely many
common constants: iterated diff operations diffk are needed in
our algorithm to discover ‘implicit’ common facts.

• E.g., diff2 returns the last-but-one index where a, b differ (0 if a, b
differ in at most one index), diff3 the last-but-two index etc.

• Those iterated operators are definable in our language.
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Interpolation for ARD(TI)

Step 0. Write both A and B in the form Φ1 ∧ Φ2, where Φ2 is a pure

TI ∪ EUF-formula and Φ1 is a conjunction of atoms of the form (17); add
also missing atoms of the kind ♣d♣ = kd to both A and B (extra free
constants are employed here).

Step 1. Let N be equal to the number of index constants occurring in

A,B (plus one); for every pair of common ARRAY-constants c1, c2, pick
fresh INDEX constants k1, . . . , kN and add the atoms diffn(c1, c2) = kn

(for all n = 1, . . . , N) to both A and B.

Step 2. B-instantiate formulae (17) with index constants (both inside A

and inside B).

Step 3. Now (this is the delicate fact to be proved) the TI ∪ EUF-part
of A ∪B become inconsistent. Since TI has general quantifier-free
interpolation, we can compute the related interpolant. To get our desired
ARD(TI)-interpolant, we only have to replace back in it the fresh
constants introduced in Step 1 by the common terms they name.
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General Interpolation for ARD(TI)?

Strong amalgamation however fails [GGKN 23]:

Theorem

The (universal) theory ARD(TI) does not have general quantifier-free
interpolation.

In fact, this is a counterexample to general interpolation:

(A) ♣a♣ = 0 ∧ rd(a, 0) = e ∧ P (a)

(B) ♣b♣ = 0 ∧ rd(b, 0) = e ∧ ¬P (b).
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General Interpolation

To restore superamalgamation, one needs a use of constant arrays. We
add a unary function Const : INDEX → ARRAY, constrained by the
following axioms:

∀i, ♣Const(i)♣ = max(i, 0). (18)

∀i, j, (0 ≤ j ∧ j ≤ ♣Const(i)♣ → rd(Const(i), j) = el). (19)

Thus Const(i) is the constant array of length i and value the distinguished
element el (the atom P (wr(Const(0), 0, e)) works now as interpolant in
the above counterexample).
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General Interpolation

General interpolation for this theory has been proved in [GGKN 23] only
semantically (via strong amalgamation).

We conjecture hierarchical reduction works too, but it is not clear whether
the reduction to TI ∪ EUF can be kept to be polynomial.
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Conclusions

As we saw, it is possible to design array theories which are significantly
expressive, while still enjoying quantifier-free and general quantifier-free
interpolation properties.
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interpolation properties.

This is remarkable, because array theories are not decidable at the
elementary level (only a limited use of quantifiers can guarantee
decidability).

Further enrichments still need to be adequately investigated.
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