The separation problem in automata theory

Thomas Place Joint work with Marc Zeitoun

LaBRI, Bordeaux University

April 22, 2024 CIBD Workshop Classes of regular languages and their *investigation* **Context**: Classes of regular languages

- Setting: finite words and regular languages (alphabet A). Lots of automata in this talk !
- ► Goal: investigate sub-classes of the regular languages.

Context: Classes of regular languages

- Setting: finite words and regular languages (alphabet A). Lots of automata in this talk !
- ► Goal: investigate sub-classes of the regular languages.

Each sub-class is based on a **piece of syntax** defining its languages:

Two main **descriptive syntaxes** for specifying regular languages

1. Regular expressions $(A^*aA^*bA^*, (ab)^*, (a(ab)^*b)^*),...)$: Each restriction of the regular expressions yields a sub-class. **Context**: Classes of regular languages

- Setting: finite words and regular languages (alphabet A). Lots of automata in this talk !
- ► Goal: investigate sub-classes of the regular languages.

Each sub-class is based on a **piece of syntax** defining its languages:

Two main **descriptive syntaxes** for specifying regular languages

- 1. Regular expressions $(A^*aA^*bA^*, (ab)^*, (a(ab)^*b)^*),...)$: Each restriction of the regular expressions yields a sub-class.
- 2. Monadic second-order logic. Büchi's theorem: MSO = REG: Each restriction of MSO yields sub-class.

Context: the historical example, first-order logic

First-order logic over words (FO(<))

▶ Word: sequence of labeled positions that can be quantified: $a \ b \ b \ c \ a \ a \ a \ \in A^*$ $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

▶ Two kinds of predicates:

- 1. for each letter $a \in A$, a(x) selects positions x with label "a".
- 2. single binary predicate for the (strict) order: x < y.

► A sentence defines a language:

 $\exists x \exists y \ a(x) \land b(y) \land x < y \land (\forall z \ x < z < y \Rightarrow c(z)) \\ \text{defines} \quad A^* a c^* b A^*$

Context: the historical example, first-order logic

First-order logic over words (FO(<))

▶ Word: sequence of labeled positions that can be quantified: $a \ b \ b \ c \ a \ a \ a \ \in A^*$ $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

► Two kinds of predicates:

- 1. for each letter $a \in A$, a(x) selects positions x with label "a".
- 2. single binary predicate for the (strict) order: x < y.

► A sentence defines a language:

 $\begin{aligned} \exists x \exists y \ a(x) \wedge b(y) \wedge x < y \wedge (\forall z \ x < z < y \Rightarrow c(z)) \\ \text{defines} \quad A^* a c^* b A^* \end{aligned}$

Informal objective

"Understand" the expressive power of FO(<):

- ▶ What regular languages can we express?
- ▶ What are those that we cannot express ?

The class of **star-free languages** (SF) is the least one such that:

The class of star-free languages (SF) is the least one such that:
▶ contains Ø (empty language) and A* (universal language).

The class of **star-free languages** (SF) is the least one such that:

- ▶ contains \emptyset (empty language) and A^* (universal language).
- closed under **union** and **complement**.

$$K, L \mapsto K \cup L$$
 $K \mapsto \overline{K}$

The class of **star-free languages** (SF) is the least one such that:

- ▶ contains \emptyset (empty language) and A^* (universal language).
- closed under **union** and **complement**.

$$K, L \mapsto K \cup L \qquad \qquad K \mapsto \overline{K}$$

closed under marked concatenation:

for a letter $a \in A$ $K, L \mapsto KaL$

The class of **star-free languages** (SF) is the least one such that:

- ▶ contains \emptyset (empty language) and A^* (universal language).
- closed under **union** and **complement**.

$$K, L \mapsto K \cup L \qquad \qquad K \mapsto \overline{K}$$

closed under marked concatenation:

for a letter $a \in A$ $K, L \mapsto KaL$

Examples of star free languages: $(A = \{a, b, c\})$.

$$A^*ac^*bA^* = A^* \ a \ \overline{(A^*aA^* \cup A^*bA^*)} \ b \ A^*$$

The class of **star-free languages** (SF) is the least one such that:

- ▶ contains \emptyset (empty language) and A^* (universal language).
- closed under **union** and **complement**.

$$K, L \mapsto K \cup L \qquad \qquad K \mapsto \overline{K}$$

closed under marked concatenation:

for a letter $a \in A$ $K, L \mapsto KaL$

Examples of star free languages: $(A = \{a, b, c\})$.

$$A^*ac^*bA^* = A^* \ a \ \overline{(A^*aA^* \cup A^*bA^*)} \ b \ A^*$$

$$\{\varepsilon\} = \overline{A^*aA^* \cup A^*bA^* \cup A^*cA^*}$$

The class of **star-free languages** (SF) is the least one such that:

- ▶ contains \emptyset (empty language) and A^* (universal language).
- closed under **union** and **complement**.

$$K, L \mapsto K \cup L \qquad \qquad K \mapsto \overline{K}$$

closed under marked concatenation:

for a letter $a \in A$ $K, L \mapsto KaL$

Examples of star free languages: $(A = \{a, b, c\})$.

$$A^*ac^*bA^* = A^* \ a \ \overline{(A^*aA^* \cup A^*bA^*)} \ b \ A^*$$

$$\{\varepsilon\} = \overline{A^*aA^* \cup A^*bA^* \cup A^*cA^*}$$

 $(ab)^* = \overline{A^*cA^* \cup bA^* \cup A^*a\{\varepsilon\}aA^* \cup A^*b\{\varepsilon\}bA^* \cup A^*a}$

The class of **star-free languages** (SF) is the least one such that:

- ▶ contains \emptyset (empty language) and A^* (universal language).
- closed under **union** and **complement**.

$$K, L \mapsto K \cup L \qquad \qquad K \mapsto \overline{K}$$

closed under marked concatenation:

for a letter $a \in A$ $K, L \mapsto KaL$

Theorem of McNaughton-Papert (1971): SF = FO(<)

Given a language L, the following are equivalent:

- ▶ L may be defined by a **first-order logic** sentence (FO(<)).
- ▶ L is star-free (i.e. $L \in SF$).

"Understand" star-free languages and expressive power of FO(<).

"Understand" star-free languages and expressive power of FO(<).

Standard approach: **membership algorithm** for SF = FO(<):

QUESTION:

Decide if L is **star-free**. (*i.e.* Does $L \in SF$?)

"Understand" star-free languages and expressive power of FO(<).

Standard approach: **membership algorithm** for SF = FO(<):

QUESTION:

Decide if L is **star-free**. (*i.e.* Does $L \in SF$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.

2. The minimal automaton of L is counter-free.

"Understand" star-free languages and expressive power of FO(<).

Standard approach: **membership algorithm** for SF = FO(<):

QUESTION:

Decide if L is **star-free**. (*i.e.* Does $L \in SF$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

- 1. L is star-free.
- 2. The minimal automaton of L is counter-free.

What are these things ? Why does this give a membership algorithm ?

Counter inside an deterministic finite automaton

What is a counter inside an arbitrary automaton \mathcal{A} ?

Sequence of states q_0, \ldots, q_n such that,

- Non-trivial $(n \ge 1)$.
- **Pairwise distinct** $(q_i \neq q_j \text{ for } i \neq j)$.
- There exists a word w such that,

 $q_i \xrightarrow{w} q_{i+1} ext{ for } i < n ext{ and } q_n \xrightarrow{w} q_0.$

Counter inside an deterministic finite automaton

What is a counter inside an arbitrary automaton \mathcal{A} ?

Sequence of states q_0, \ldots, q_n such that,

- Non-trivial $(n \ge 1)$.
- **Pairwise distinct** $(q_i \neq q_j \text{ for } i \neq j)$.
- There exists a word w such that,

$$q_i \xrightarrow{w} q_{i+1} ext{ for } i < n ext{ and } q_n \xrightarrow{w} q_0.$$

Given a regular language L, the following are equivalent:

- 1. L is star-free.
- 2. The **minimal automaton** of *L* is **counter-free**. (*i.e.*, It does **not** contain a counter)

Q

 r_2

There is a counter:

h

ab

Context: The membership problem Membership algorithm for SF = FO(<):

QUESTION:

Decide if L is **star-free**. (*i.e.* Does $L \in SF$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

- 1. L is star-free.
- 2. The minimal automaton of L is counter-free.

Context: The membership problem Membership algorithm for SF = FO(<):

QUESTION:

Decide if L is **star-free**. (*i.e.* Does $L \in SF$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

- 1. L is star-free.
- 2. The minimal automaton of L is counter-free.

Key point: Most of the insight on SF comes **the proof** of $2 \Rightarrow 1$.

• Hypothesis: **Abstract** on a recognizer of L.

Context: The membership problem Membership algorithm for SF = FO(<):

QUESTION:

Decide if L is **star-free**. (*i.e.* Does $L \in SF$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

- 1. L is star-free.
- 2. The minimal automaton of L is counter-free.

Key point: Most of the insight on SF comes **the proof** of $2 \Rightarrow 1$.

- Hypothesis: **Abstract** on a recognizer of L.
- Objective: **Build a SF expression or FO sentence** for *L*.
- ▶ Byproduct: Normal forms for expressions and sentences.

• • • •

- 1. Look at **other significant classes** (lots of historical examples):
- Piecewise testable languages/Existential first-order logic (BΣ₁(<)). (Simon'75).
- Unambiguous languages/Two-variable first-order logic (FO²(<)). (Schützenberger'76, Thérien-Wilke'98).

• • • •

- 1. Look at **other significant classes** (lots of historical examples):
- Piecewise testable languages/Existential first-order logic (BΣ₁(<)). (Simon'75).
- Unambiguous languages/Two-variable first-order logic (FO²(<)). (Schützenberger'76, Thérien-Wilke'98).
- 2. Look at objects generalizing classes: **operators**.

What now ?

• • • •

1. Look at **other significant classes** (lots of historical examples):

- ▶ Piecewise testable languages/Existential first-order logic (BΣ₁(<)). (Simon 1975).
- Unambiguous languages/Two-variable first-order logic (FO²(<)). (Schützenberger 1976, Thérien-Wilke 1998).

2. Look at objects generalizing classes: **operators**.

Defining families of classes: *operators*

An **operator**? What's that?

- ▶ **Operator**: correspondence $\mathcal{C} \mapsto Op(\mathcal{C})$. It builds a new class $Op(\mathcal{C})$ from every input class \mathcal{C} .
- ► A single operator specifies a **family of closely related classes**.

New objective: understand **operators** rather than single classes.

An **operator**? What's that?

▶ **Operator**: correspondence $\mathcal{C} \mapsto Op(\mathcal{C})$. It builds a new class $Op(\mathcal{C})$ from every input class \mathcal{C} .

► A single operator specifies a **family of closely related classes**.

New objective: understand **operators** rather than single classes.

Why? What are the "concrete" operators? Where are they coming from?

Operators - a first motivation: quantifier-alternation hierarchies of FO

A natural follow-up question: **quantifier alternation** Intuition:

▶ **High quantifier alternation**: hard to understand.

$$\begin{aligned} \exists u \exists v \ \forall x \forall y \ \exists z \left(\begin{array}{c} a(u) \wedge a(v) \wedge u < v \\ \wedge (u < x < z < y < v) \Rightarrow (\neg b(x) \vee \neg b(y) \vee c(z)) \end{array} \right) \\ \end{aligned}$$
 Defines: $A^* a \overline{\left(A^* b \overline{(A^* c A^*)} b A^*\right)} a A^*. \end{aligned}$

Validated by theory:

- Satisfiability is non-elementary hard for FO(<).
- ▶ Directly tied to quantifier alternation.

Natural idea:

▶ Look at membership for levels in quantifier alternation hierarchy.

Idea: Classify the sentences according to quantifier alternation

Boolean combinations of $\Sigma_1(<)$ sentences

$$\Sigma_1(<) - B\Sigma_1(<) - \Sigma_2(<) - B\Sigma_2(<) - \Sigma_3(<) - B\Sigma_3(<) - \Sigma_4(<)$$

Construction process characterized by two operators (Thomas'82)

$$\Sigma_1(<) - B\Sigma_1(<) - \Sigma_2(<) - B\Sigma_2(<) - \Sigma_3(<) - B\Sigma_3(<) - \Sigma_4(<)$$

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}

 $\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

• Union:

 $K, L \mapsto K \cup L.$

• Marked concatenation: $K, L, a \mapsto KaL.$

$$\Sigma_1(<) - B\Sigma_1(<) - \Sigma_2(<) - B\Sigma_2(<) - \Sigma_3(<) - B\Sigma_3(<) - \Sigma_4(<)$$

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}

 $\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

• Union:

 $K,L\mapsto K\cup L.$

• Marked concatenation: $K,L,a\mapsto KaL.$

Boolean closure of a class \mathcal{C}

 $\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

• Union:

 $K,L\mapsto K\cup L.$

• Complement: $K \mapsto A^* \setminus K.$

$$\Sigma_1(<) - B\Sigma_1(<) - \Sigma_2(<) - B\Sigma_2(<) - \Sigma_3(<) - B\Sigma_3(<) - \Sigma_4(<)$$

 $\{ \emptyset, A^* \}$

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}

 $\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

• Union:

 $K, L \mapsto K \cup L.$

• Marked concatenation: $K,L,a\mapsto KaL.$

Boolean closure of a class \mathcal{C}

 $\operatorname{Bool}(\mathfrak{C})$ is the closure of \mathfrak{C} under,

• Union:

 $K,L\mapsto K\cup L.$

• Complement: $K \mapsto A^* \setminus K.$

$$\Sigma_1(<) - B\Sigma_1(<) - \Sigma_2(<) - B\Sigma_2(<) - \Sigma_3(<) - B\Sigma_3(<) - \Sigma_4(<)$$

 $\{\emptyset,A^*\}$

Pol

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}

 $\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

• Union:

 $K,L\mapsto K\cup L.$

• Marked concatenation: $K,L,a\mapsto KaL.$

Boolean closure of a class \mathcal{C}

 $\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

• Union:

 $K,L\mapsto K\cup L.$

• Complement: $K \mapsto A^* \setminus K.$

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}

 $\operatorname{Pol}(\mathfrak{C})$ is the closure of \mathfrak{C} under,

• Union:

 $K,L\mapsto K\cup L.$

• Marked concatenation: $K,L,a\mapsto KaL.$

Boolean closure of a class \mathcal{C}

 $\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

• Union:

 $K,L\mapsto K\cup L.$

• Complement: $K \mapsto A^* \setminus K.$

• Complement:

 $K \mapsto A^* \setminus K.$

- $K. L \mapsto K \cup L.$
- Marked concatenation: $K, L, a \mapsto KaL.$

Operators - a second motivation: natural variants of FO

Many "variants" of first-order logic: each associated to a signature.

FO(<): linear ordering.

Many "variants" of first-order logic: each associated to a signature.

- ▶ FO(<): linear ordering.
- ► FO(<, MOD): linear order, modular predicates.

for $d, m \in \mathbb{N}$, unary predicate $M_{d,m}(x)$ expressing, "the position x is congruent to d modulo m".

Many "variants" of first-order logic: each associated to a signature.

- ▶ FO(<): linear ordering.
- FO(<, MOD): linear order, modular predicates.

for $d, m \in \mathbb{N}$, unary predicate $M_{d,m}(x)$ expressing, "the position x is congruent to d modulo m".

► FO(<, AMOD): linear order, alphabetic modular predicates.

for $a \in A$ and $d, m \in \mathbb{N}$, unary predicate $M^a_{d,m}(x)$ expressing, "number of *a*'s preceding *x* is congruent to *d* modulo *m*".

Many "variants" of first-order logic: each associated to a signature.

- ▶ FO(<): linear ordering.
- ► FO(<, MOD): linear order, modular predicates.

for $d, m \in \mathbb{N}$, unary predicate $M_{d,m}(x)$ expressing, "the position x is congruent to d modulo m".

► FO(<, AMOD): linear order, alphabetic modular predicates.

for $a \in A$ and $d, m \in \mathbb{N}$, unary predicate $M^a_{d,m}(x)$ expressing, "number of *a*'s preceding *x* is congruent to *d* modulo *m*".

FO(<, +1): successor (binary predicate "x + 1 = y").

Successor pointless for FO as FO(<) = FO(<, +1).

• Important for alternation hierarchies: $\Sigma_n(<) \neq \Sigma_n(<,+1)$.

Another alternation hierarchy (successor)

$$\Sigma_1(<,+1) - \mathcal{B}\Sigma_1(<,+1) - \Sigma_2(<,+1) - \mathcal{B}\Sigma_2(<,+1) - \Sigma_3(<,+1) - \mathcal{B}\Sigma_3(<,+1) - \Sigma_4(<,+1) - \mathcal{D}\Sigma_4(<,+1) - \mathcal{D}\Sigma_4(<,+1$$

Another alternation hierarchy (successor)

Another alternation hierarchy (successor)

Yet another alternation hierarchy (MOD)

 $\Sigma_1(<, \text{MOD}) - \mathcal{B}\Sigma_1(<, \text{MOD}) - \Sigma_2(<, \text{MOD}) - \mathcal{B}\Sigma_2(<, \text{MOD}) - \Sigma_3(<, \text{MOD}) \cdots FO(<, \text{MOD})$

Yet again another alternation hierarchy (Groups)

Not very natural from a logical perspective. Prominent from the concatenation hierarchy point of view.

Yet again another alternation hierarchy (Groups)

Operators: what now ?

- ▶ **Operator**: correspondence $\mathcal{C} \mapsto Op(\mathcal{C})$. It builds a new class $Op(\mathcal{C})$ from every input class \mathcal{C} .
- ► A single operator specifies a **family of closely related classes**.

New aim: understand **operators** rather than single classes.

Operators: what now ?

▶ **Operator**: correspondence $\mathcal{C} \mapsto Op(\mathcal{C})$. It builds a new class $Op(\mathcal{C})$ from every input class \mathcal{C} .

► A single operator specifies a **family of closely related classes**.

New aim: understand **operators** rather than single classes.

What does this mean in the context of membership?

Previous question: tied to a single fixed class \mathcal{D} Does \mathcal{D} have decidable membership?

Operators: what now ?

▶ **Operator**: correspondence $\mathcal{C} \mapsto Op(\mathcal{C})$. It builds a new class $Op(\mathcal{C})$ from every input class \mathcal{C} .

► A single operator specifies a **family of closely related classes**.

New aim: understand **operators** rather than single classes.

What does this mean in the context of membership?

Previous question: tied to a single fixed class \mathcal{D} Does \mathcal{D} have decidable membership?

New question: for an **operator** $\mathcal{C} \mapsto Op(\mathcal{C})$ (family of classes) Find hypotheses on \mathcal{C} ensuring that $Op(\mathcal{C})$ has decidable membership.

In many (but not all) cases, the answer is separation.

Enter the separation problem.

The separation problem for a class of languages $\ensuremath{\mathfrak{C}}$

The separation problem for a class of languages ${\mathcal C}$

QUESTION: Is L_0 C-separable from L_1 ?

We want $K \in \mathcal{C}$ such that,

- $L_0 \subseteq K$.
- $L_1 \cap K = \emptyset$.

The separation problem for a class of languages ${\mathcal C}$

The separation problem for a class of languages $\ensuremath{\mathcal{C}}$

The separation problem for a class of languages ${\mathcal C}$

The separation problem for a class of languages ${\mathcal C}$

The separation problem for a class of languages $\ensuremath{\mathcal{C}}$

The case for separation

Separation: natural generalization of membership.

- ▶ Negative aspect:
 - 🙂 Usually harder than membership.
- Positive aspects:
 - More rewarding with respect to the insight gained on classes:
 C-membership: detects the languages in C.
 C-separation: interaction of C with all regular languages.

The case for separation

Separation: natural generalization of membership.

- ▶ Negative aspect:
 - Usually harder than membership.
- Positive aspects:
 - More rewarding with respect to the insight gained on classes:
 C-membership: detects the languages in C.
 C-separation: interaction of C with all regular languages.
 - **: "transfer results**" for operators (*e.g.*, star-free closure).

Let us look at the second point.

Generic characterization of star-free closure using **separation**

Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input C (with mild hypotheses)
L a regular language. The following properties are equivalent.
1. L ∈ SF(C).
2. L ∈ FO(I_C) (I_C: generic signature built from C).

3. The minimal automaton of L does not contain a C-counter.

Generic characterization of star-free closure $(SF(\mathcal{C}))$

Characterization for an arbitrary input \mathcal{C} (with mild hypotheses)

- ${\cal L}$ a regular language. The following properties are equivalent.
 - 1. $L \in SF(\mathcal{C})$.
 - 2. $L \in FO(\mathbb{I}_{\mathcal{C}})$ ($\mathbb{I}_{\mathcal{C}}$: generic signature built from \mathcal{C}).
 - 3. The minimal automaton of L does not contain a C-counter.

What is a C-counter inside an arbitrary DFA \mathcal{A} ?

Sequence of states q_0, \ldots, q_n such that,

- Non-trivial $(n \ge 1)$.
- **Pairwise distinct** $(q_i \neq q_j \text{ for } i \neq j)$.

Generic characterization of star-free closure $(SF(\mathcal{C}))$

Characterization for an arbitrary input \mathcal{C} (with mild hypotheses)

- ${\cal L}$ a regular language. The following properties are equivalent.
 - 1. $L \in SF(\mathcal{C})$.
 - 2. $L \in FO(\mathbb{I}_{\mathcal{C}})$ ($\mathbb{I}_{\mathcal{C}}$: generic signature built from \mathcal{C}).
 - 3. The minimal automaton of L does not contain a C-counter.

What is a C-counter inside an arbitrary DFA \mathcal{A} ?

Sequence of states q_0, \ldots, q_n such that,

- Non-trivial $(n \ge 1)$.
- **Pairwise distinct** $(q_i \neq q_j \text{ for } i \neq j)$.
- $\bigcap_{i \leq n} L(q_i, q_i)$ not C-separable from $\bigcap_{i < n} L(q_i, q_{i+1}) \cap L(q_n, q_0)$

$$(L(q,r) = \{ w \in A^* \mid q \xrightarrow{w} r \})$$

Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input C (with mild hypotheses)
L a regular language. The following properties are equivalent.
1. L ∈ SF(C).
2. L ∈ FO(I_C) (I_C: generic signature built from C).

3. The minimal automaton of L does not contain a C-counter.

Consequence

Membership for $SF(\mathcal{C})$ boils down to **separation** for \mathcal{C} .

The proof of $3 \Rightarrow 1$ is particularly interesting:

- ▶ If there is no C-counter, build a "SF(C) expression" for L.
- ► First step: choose the basic languages in C.
- \blacktriangleright These are the languages in ${\mathfrak C}$ that separate languages of the form,

$$\bigcap_{(q,r)\in P} L(q,r) \quad P \text{ a set of pairs of states.}$$

▶ **Star-free closure** $(\mathcal{C} \mapsto SF(\mathcal{C}))$.

Membership for $SF(\mathcal{C})$ boils down to separation for \mathcal{C} .

P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

 Star-free closure (C → SF(C)). Membership for SF(C) boils down to separation for C.
 P., Zeitoun (2019) - Can also be deduced from Straubing (1979).
 Polynomial closure (C → Pol(C)). Membership for Pol(C) boils down to separation for C.

P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).

▶ **Star-free closure** $(\mathcal{C} \mapsto SF(\mathcal{C}))$.

Membership for $SF(\mathcal{C})$ boils down to **separation** for \mathcal{C} .

P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

▶ **Polynomial closure** $(\mathcal{C} \mapsto Pol(\mathcal{C}))$.

Membership for $Pol(\mathcal{C})$ boils down to **separation** for \mathcal{C} .

P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).

▶ Boolean polynomial closure (C → BPol(C)).
 Membership for BPol(C) boils down to covering for C.
 P., Zeitoun (2024)
 Covering: generalizes separation to more than two inputs.

Star-free closure $(\mathcal{C} \mapsto SF(\mathcal{C}))$. **Membership** for $SF(\mathcal{C})$ boils down to separation for \mathcal{C} . P., Zeitoun (2019) - Can also be deduced from Straubing (1979). ▶ Polynomial closure $(\mathcal{C} \mapsto \operatorname{Pol}(\mathcal{C}))$. **Membership** for $Pol(\mathcal{C})$ boils down to separation for \mathcal{C} . P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997). **Boolean polynomial closure** $(\mathcal{C} \mapsto BPol(\mathcal{C}))$. **Membership** for BPol(\mathcal{C}) boils down to **covering** for \mathcal{C} . P., Zeitoun (2024) Covering: generalizes separation to more than two inputs.

Star-free closure $(\mathcal{C} \mapsto SF(\mathcal{C}))$. **Membership** for $SF(\mathcal{C})$ boils down to separation for \mathcal{C} . P., Zeitoun (2019) - Can also be deduced from Straubing (1979). ▶ Polynomial closure $(\mathcal{C} \mapsto \operatorname{Pol}(\mathcal{C}))$. **Membership** for $Pol(\mathcal{C})$ boils down to separation for \mathcal{C} . P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997). **Boolean polynomial closure** $(\mathcal{C} \mapsto BPol(\mathcal{C}))$. **Membership** for BPol(\mathcal{C}) boils down to **covering** for \mathcal{C} . P., Zeitoun (2024)

Covering: generalizes separation to more than two inputs.

 $\Sigma_1(<) - B\Sigma_1(<) - \Sigma_2(<) - B\Sigma_2(<) - \Sigma_3(<) - B\Sigma_3(<) - \Sigma_4(<)$

Separation and covering decidable Membership decidable

 Star-free closure (C → SF(C)). Membership for SF(C) boils down to separation for C. P., Zeitoun (2019) - Can also be deduced from Straubing (1979).
 Polynomial closure (C → Pol(C)). Membership for Pol(C) boils down to separation for C. P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).
 Boolean polynomial closure (C → BPol(C)). Membership for BPol(C) boils down to covering for C.

P., Zeitoun (2024)

Covering: generalizes separation to more than two inputs.

Transfer theorems for Pol and BPol

 $\Sigma_1(<) - B\Sigma_1(<) - \Sigma_2(<) - B\Sigma_2(<) - \Sigma_3(<) - B\Sigma_3(<) - \Sigma_4(<)$

Separation and covering decidable Membership decidable

So, how do we deal with this separation stuff ? Tackling the **separation problem** The typical separation procedure for class \mathcal{C}

We want to **test C-separability** for these two inputs.

The typical separation procedure for class $\ensuremath{\mathfrak{C}}$

The typical separation procedure for class \mathcal{C}

The typical separation procedure for class $\ensuremath{\mathfrak{C}}$

The typical separation procedure for class $\ensuremath{\mathfrak{C}}$

One can prove that $\mathcal{I}_{\Sigma_1}[\mathcal{A}]$ is the least subset of Q^4 such that:

One can prove that $\mathfrak{I}_{\Sigma_1}[\mathcal{A}]$ is the least subset of Q^4 such that: (1) If $L(q,r) \cap L(s,t) \neq \emptyset$, then $(q,r,s,t) \in \mathfrak{I}_{\Sigma_1}[\mathcal{A}]$

Generic to all classes \mathcal{C}

Intersecting languages are not C-separable

One can prove that $\mathcal{I}_{\Sigma_1}[\mathcal{A}]$ is the least subset of Q^4 such that: (1) If $L(q,r) \cap L(s,t) \neq \emptyset$, then $(q,r,s,t) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$ (2) If $(q,r,s,t), (r,u,t,v) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$, then $(q,u,s,v) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$

Generic to all practical^{*} classes \mathcal{C}

If L_0 is not C-separable from L_1 and H_0 is not C-separable from H_1 , then L_0H_0 is not C-separable from L_1H_1 .

 * mild hypotheses on ${\mathfrak C}$ are needed.

One can prove that $\mathcal{I}_{\Sigma_1}[\mathcal{A}]$ is the least subset of Q^4 such that: (1) If $L(q,r) \cap L(s,t) \neq \emptyset$, then $(q,r,s,t) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$ (2) If $(q,r,s,t), (r,u,t,v) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$, then $(q,u,s,v) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$ (3) If $q,r,s \in Q$ and $L(r,s) \neq \emptyset$, then $(q,q,r,s) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$

Specific to the particular class $\Sigma_1(<)$

 A^* is the only language in $\Sigma_1(<)$ containing the empty word $\varepsilon \in L(q,q)$.

One can prove that $\mathcal{J}_{\Sigma_1}[\mathcal{A}]$ is the least subset of Q^4 such that: (1) If $L(q,r) \cap L(s,t) \neq \emptyset$, then $(q,r,s,t) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$ (2) If $(q,r,s,t), (r,u,t,v) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$, then $(q,u,s,v) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$ (3) If $q, r, s \in Q$ and $L(r,s) \neq \emptyset$, then $(q,q,r,s) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$

One can prove that $\mathcal{J}_{\Sigma_1}[\mathcal{A}]$ is the least subset of Q^4 such that: (1) If $L(q,r) \cap L(s,t) \neq \emptyset$, then $(q,r,s,t) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$ (2) If $(q,r,s,t), (r,u,t,v) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$, then $(q,u,s,v) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$ (3) If $q,r,s \in Q$ and $L(r,s) \neq \emptyset$, then $(q,q,r,s) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$

One can prove that $\mathcal{J}_{\Sigma_1}[\mathcal{A}]$ is the least subset of Q^4 such that: (1) If $L(q,r) \cap L(s,t) \neq \emptyset$, then $(q,r,s,t) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$ (2) If $(q,r,s,t), (r,u,t,v) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$, then $(q,u,s,v) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$ (3) If $q,r,s \in Q$ and $L(r,s) \neq \emptyset$, then $(q,q,r,s) \in \mathcal{J}_{\Sigma_1}[\mathcal{A}]$

One can prove that $\mathcal{I}_{\Sigma_1}[\mathcal{A}]$ is the least subset of Q^4 such that: (1) If $L(q,r) \cap L(s,t) \neq \emptyset$, then $(q,r,s,t) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$ (2) If $(q,r,s,t), (r,u,t,v) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$, then $(q,u,s,v) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$ (3) If $q,r,s \in Q$ and $L(r,s) \neq \emptyset$, then $(q,q,r,s) \in \mathcal{I}_{\Sigma_1}[\mathcal{A}]$

The difficulty of separation: a fixpoint concern

▶ Problem: the pattern seen for membership repeats itself...

Previous question: tied to a single fixed class \mathcal{D} Does \mathcal{D} have decidable separation ?

New question: for an **operator** $\mathcal{C} \mapsto Op(\mathcal{C})$ (family of classes) Find hypotheses on \mathcal{C} ensuring that $Op(\mathcal{C})$ has decidable **separation**. The difficulty of separation: a fixpoint concern

▶ Problem: the pattern seen for membership repeats itself...

Previous question: tied to a single fixed class \mathcal{D} Does \mathcal{D} have decidable separation ?

New question: for an **operator** $\mathcal{C} \mapsto Op(\mathcal{C})$ (family of classes) Find hypotheses on \mathcal{C} ensuring that $Op(\mathcal{C})$ has decidable **separation**.

This is difficult.

- **Least fixpoints** often need **more information** than separation.
- ▶ \Rightarrow go beyond separation (*e.g.*, covering and beyond).

The difficulty of separation: a fixpoint concern

▶ Problem: the pattern seen for membership repeats itself...

Previous question: tied to a single fixed class \mathcal{D} Does \mathcal{D} have decidable separation ?

New question: for an **operator** $\mathcal{C} \mapsto Op(\mathcal{C})$ (family of classes) Find hypotheses on \mathcal{C} ensuring that $Op(\mathcal{C})$ has decidable **separation**.

This is difficult.

- **Least fixpoints** often need **more information** than separation.
- ▶ \Rightarrow go beyond separation (*e.g.*, covering and beyond).

Current results are restrict to very specific kinds of input classes. (e.g. low levels in alternation hierarchies).

Thank you !

Separation and covering decidable Membership decidable