The separation problem in automata theory

Thomas Place

Joint work with Marc Zeitoun

LaBRI, Bordeaux University

April 22, 2024
CIBD Workshop



Classes of regular languages
and their tnvestigation




Context: Classes of regular languages

> Setting: finite words and regular languages (alphabet A).
Lots of automata in this talk !

> Goal: investigate sub-classes of the regular languages.



Context: Classes of regular languages

> Setting: finite words and regular languages (alphabet A).
Lots of automata in this talk !

> Goal: investigate sub-classes of the regular languages.

Each sub-class is based on a piece of syntax defining its languages:

Two main descriptive syntaxes for specifying regular languages
1. Regular expressions (A*aA*bA*, (ab)*, (a(ab)*b)*),...):
Each restriction of the regular expressions yields a sub-class.




Context: Classes of regular languages
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Lots of automata in this talk !

> Goal: investigate sub-classes of the regular languages.

Each sub-class is based on a piece of syntax defining its languages:

Two main descriptive syntaxes for specifying regular languages
1. Regular expressions (A*aA*bA*, (ab)*, (a(ab)*b)*),...):
Each restriction of the regular expressions yields a sub-class.

2. Monadic second-order logic. Biichi’s theorem: MSO = REG:
Each restriction of MSO yields sub-class.




Context: the historical example, first-order logic

First-order logic over words (FO(<))

» Word: sequence of labeled positions that can be quantified:
abbbcaaa € A*

01234567
» Two kinds of predicates:
1. for each letter a € A, a(z) selects positions x with label “a”.
2. single binary predicate for the (strict) order: z < y.
> A sentence defines a language:
Jzdy a(z) ANb(y) Nz <y A (Vzz <z<y=c(z))
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abbbcaaa € A*

01234567
» Two kinds of predicates:
1. for each letter a € A, a(z) selects positions x with label “a”.
2. single binary predicate for the (strict) order: z < y.
> A sentence defines a language:
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Informal objective
“Understand” the expressive power of FO(<):
» What regular languages can we express?

» What are those that we cannot express 7
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» contains () (empty language) and A* (universal language).

» closed under union and complement.
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Examples of star free languages: (A = {a,b, c}).
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Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:
» contains () (empty language) and A* (universal language).

» closed under union and complement.

K,L— KUL KK

» closed under marked concatenation:

for a letter a € A K, L— KaL

Theorem of McNaughton-Papert (1971): SF = FO(<)

Given a language L, the following are equivalent:
» L may be defined by a first-order logic sentence (FO(<)) .
» L is star-free (i.e. L € SF).
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Informal objective J

“Understand” star-free languages and expressive power of FO(<).

Standard approach: membership algorithm for SF = FO(<):
INPUT: A regular language L. QUESTION:

Decide if L is star-free.

b
a @ (i.e. Does L € SF 7)
—*8—> @) v
b

Solution: Schiitzenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.

2. The minimal automaton of L is counter-free.

What are these things ? Why does this give a membership algorithm ?



Counter inside an deterministic finite automaton

What is a counter inside an arbitrary automaton A?

e Non-trivial (n > 1).

Sequence of states qq, ..., g, such that,

e Pairwise distinct (g; # g; for i # j).
e There exists a word w such that,

q; = giv1 for i <mn and gq, = qo-
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Counter inside an deterministic finite automaton

What is a counter inside an arbitrary automaton A?

o™ &A™ ~o

Sequence of states qo, . .., ¢, such that, “qn? N
e Non-trivial (n > 1). s/ g
e Pairwise distinct (g; # ¢; for i # j). o .jﬁ
e There exists a word w such that, Y L
g; — gi+1 for 2 < n and g, — qo. "(;{-1" ..
‘. '}_}." 2§" '®

Given a regular language L, the following are equivalent:

1. L is star-free.

2. The minimal automaton of L is counter-free.
(i.e., It does not contain a counter)
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Counter inside an deterministic finite automaton - Examples
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Context: The membership problem
Membership algorithm for SF = FO(<):

INPUT: A regular language L.

ig1

QUESTION:

Decide if L is star-free.
(i.e. Does L € SF 7)

Solution: Schiitzenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.

2. The minimal automaton of L is counter-free.

Key point: Most of the insight on SF comes the proof of 2 = 1.

» Hypothesis: Abstract on a recognizer of L.

» Objective: Build a SF expression or FO sentence for L.

» Byproduct: Normal forms for expressions and sentences.
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(Schiitzenberger’76, Thérien-Wilke’98).
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Defining families of classes:
operators
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New objective: understand operators rather than single classes. J




An operator 7 What’s that ?

» Operator: correspondence € — Op(C).
It builds a new class Op(€) from every input class C.

> A single operator specifies a family of closely related classes.

New objective: understand operators rather than single classes. )

Why ? What are the “concrete” operators 7
Where are they coming from 7



Operators - a first motivation:
quantifier-alternation hierarchies of FO




A natural follow-up question: quantifier alternation

Intuition:

» High quantifier alternation: hard to understand.

JuIv VaVy Iz ( a(u) Aa(v) Au <wv )

ANu<z<z<y<wv)= (=b(z)V-bly)Vec(z))

Defines: A*a (A*b(A*cA*)bA*) aA*.

Validated by theory:
> Satisfiability is non-elementary hard for FO(<).

» Directly tied to quantifier alternation.
Natural idea:

» Look at membership for levels in quantifier alternation hierarchy.
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Boolean combinations of ¥;(<) sentences
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Simon (1975)
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Idea: Classify the sentences according to quantifier alternation

Simon (1975

I P., Zeitoun (2024) l
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The quantifier alternation hierarchy of FO(<)

Idea: Classify the sentences according to quantifier alternation

s N

Simon (1975

I P., Zeitoun (2024) l

P., Zeitoun (2014) |

Sea of the open
Arfi (1987) problems
Pin, Weil (1995)
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Characterization by operators: concatenation hierarchies

Pol Pol Pol
31(<) — BE1(<) — T2(<) — BE2(<) — 23(<) — BE3(<) — Za (<) verrnrarnnra
—_ Bool Bool
&
Exact correspondence with
{0, A*} the concatenation hierarchy of basis {0, A*}
(called Straubing-Thérien hierarchy (1981))

Construction process characterized by two operators (Thomas’82)

Polynomial closure of a class C Boolean closure of a class C

Pol(€) is the closure of € under, Bool(€) is the closure of € under,

e Union: e Union:
K,L— KUL. K,L— KUL.
e Marked concatenation:
K,L,a— KalL.

e Complement:
K — A*\ K.




Characterization by operators: concatenation hierarchies

Natural next objective:

Generic analysis of the operators Pol and Bool.
(and their composition BPol)
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Choosing a signature for first-order logic

Many “variants” of first-order logic: each associated to a signature.
» FO(<): linear ordering.
» FO(<,mop): linear order, modular predicates.

for d,m € N, unary predicate Mg, (x) expressing,
“the position x is congruent to d modulo m”.

» FO(<,amopn): linear order, alphabetic modular predicates.

for a € A and d,m € N, unary predicate M, (x) expressing,
“number of a’s preceding z is congruent to d modulo m”.

» FO(<,+1): successor (binary predicate “z +1=y").

> Successor pointless for FO as FO(<) = FO(<, +1).

» Important for alternation hierarchies: ¥,(<) # X, (<.+1).
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Another alternation hierarchy (successor)

(0, {c}, A", A"

{0.{¢} } Exact correspondence with the
concatenation hierarchy of basis {0, {¢}, AT A*}
(the dot-depth hierarchy - Brzozowski, Cohen (1971))

Pol

Pol Pol Pol

A 4

Fi(<,41) - BX1(<,41) - Ta(<,+1) - BX2(<,+1) - X3(<,+1) - BE3(<,41) - Ta(<,+1) seernnnn
~— A" ~— A" ~— A"

Bool Bool Bool




Another alternation hierarchy (successor)

{0, {}, A7, A°

{0.{¢} } Exact correspondence with the
concatenation hierarchy of basis {0, {¢}, AT A*}
(the dot-depth hierarchy - Brzozowski, Cohen (1971))

Pol

Pol Pol Pol

Y1(<,+1) - BY1 (<, +1) - B2(<,+1) - B2 (<, +1) - X3(<,+1) - BX3(<,+1) - 3a(<,+1) =eeneen

Bool

Knast (1983)

Also transfer results from

the “<” alternation hierarchy

IGlaﬁer, Schmitz (2000)

BY levels: Straubing (1985)
3 levels: Pin Weil (2002)

Pin, Weil (1995)




Yet another alternation hierarchy (MOD)

31(<,MOD) - BX1 (<,MOD) - X2(<,MOD) - BX3(<,MOD) - X3(<,MOD) ==s==: FO(<,MOD)




Yet another alternation hierarchy (MOD)

Basis: MOD (finite unions of languages (A%)* A" for r < q)

\\ SF (star-free closure)
5
Pol Pol
Do (<\,:v10D) - BX1(<,MOD) - ¥2(<,MOD) - BX2(<,MOD) - X3(<,MOD) *=+s: FO(<, MoD)
Bool Bool




Yet another alternation hierarchy (MOD)
r Basis: MOD (finite unions of languages (A9)*A" for r < q)

\\ SF (star-free closure)

Pol

Pol

Pol

¥1(<,MOD) - BX; (<,MOD) - X2 (<,MOD) - BX3(<,MOD) - X3(<,MOD) ====s: FO(<,MOD)

| P., Zeitoun (2019)

Kufleitner, Walter (2013) l

I P., Zeitoun (2024) l

Barrington, Compton,

Chaubard, Pin, Straubing (2006) |
Straubing, Thérien (1992)




Yet again another alternation hierarchy (Groups)

Basis: GR (group languages)

qF (star-free closure)
3
o
Pol .
1(<, Pg) — BEL (<L, Pg) — B2(<, Pg) — BE2(<, Pg) — s (<, Pg) wevreen FO(<, Pg)

Bool Bool

Not very natural from a logical perspective.
| Prominent from the concatenation hierarchy point of view.




Yet again another alternation hierarchy (Groups)

-

Basis: GR (group languages)

SF (star-fre

21 (<, Pg) — BE (<, Pg) — 32(<, Pg) — BXE2 (<, Pg) — I3 (<, Pg) meereen FO(<,Pg)

P., Zeitoun (2024)

Henckell, Margolis,
Pin, Rhodes (1991)

Pin Weil (2002) P., Zeitoun (2019) |

l Karnofsky, Rhodes (1982)

Not very natural from a logical perspective.
| Prominent from the concatenation hierarchy point of view.




Yet again another alternation hierarchy (Groups)

Natural variants captured by operators

Generic analysis is desirable for,

e Polynomial closure: €+ Pol(C).
Union: K,L— KUL
Marked concatenation: K, L,a+— KalL

e Boolean polynomial closure: € +— BPol(C).
BPol(€) = Bool(Pol(€))

e Star-free closure: € — SF(C).
Union: K, L— KUL
Complement: K — A*\ K
Marked concatenation: K, L,a — KalL
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» Operator: correspondence € — Op(C).
It builds a new class Op(€) from every input class C.

> A single operator specifies a family of closely related classes.

New aim: understand operators rather than single classes.
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Operators: what now ?

» Operator: correspondence € — Op(C).
It builds a new class Op(€) from every input class C.

> A single operator specifies a family of closely related classes.

New aim: understand operators rather than single classes. J

What does this mean in the context of membership?

Previous question: tied to a single fixed class D
Does D have decidable membership?

New question: for an operator € — Op(C€) (family of classes)

Find hypotheses on € ensuring that Op(€) has decidable membership.

In many (but not all) cases, the answer is separation.



Enter the separation problem.




The separation problem for a class of languages €

INPUT: two regular languages.
Lo
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The separation problem for a class of languages C

S

INPUT: two regular languages.
Lo

_0?/(1)

QUESTION: Is Ly C-separable

from L7

We want K € C such that,
o [p CK.
e LiNK=10.

J

e Reduction from membership.
(special case L1 = A*\ Lg)




The separation problem for a class of languages C

e ~

QUESTION: Is Ly C-separable

INPUT: two regular languages.

Lo from Ly?
a We want K € € such that,
*OC(P e LyC K.
a ° Ll NK = @

J

e Reduction from membership.
(special case L1 = A*\ Lg)




The separation problem for a class of languages €

INPUT: two regular languages. | | QUESTION: Is Ly C-separable

Lo from Ly?
a We want K € € such that,
—*QC? Lo C K.
a e L1NK =0.

A e Reduction from membership.
(special case L1 = A*\ Lg)
e Boils down to interpolation.
Interpolate Lo and A*\ Ly:
,‘ KGGStLogKgA*\Ll

K belongs to C




The case for separation

Separation: natural generalization of membership.

> Negative aspect:
® Usually harder than membership.
» Positive aspects:

® More rewarding with respect to the insight gained on classes:
C-membership: detects the languages in C.
C-separation: interaction of € with all regular languages.



The case for separation

Separation: natural generalization of membership.

> Negative aspect:
® Usually harder than membership.
» Positive aspects:

® More rewarding with respect to the insight gained on classes:
C-membership: detects the languages in C.
C-separation: interaction of € with all regular languages.
® “transfer results” for operators (e.g., star-free closure).

Let us look at the second point.




Generic characterization
of star-free closure using separation




Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input € (with mild hypotheses)
L a regular language. The following properties are equivalent.

1. L € SF(e).
2. L € FO(Ie) (Te: generic signature built from €).

3. The minimal automaton of L does not contain a C-counter.
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Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input € (with mild hypotheses)
L a regular language. The following properties are equivalent.

1. L € SF(@).
2. L € FO(Ie) (Te: generic signature built from €).

3. The minimal automaton of L does not contain a C-counter.

What is a C-counter inside an arbitrary DFA A?

Sequence of states qq, . .., g, such that,
e Non-trivial (n > 1). %-n,‘ e
e Pairwise distinct (g; # qj for i # 7). \/‘. i .:(]-4,:?
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Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input € (with mild hypotheses)
L a regular language. The following properties are equivalent.

1. L € SF(@).
2. L € FO(Ie) (Te: generic signature built from €).

3. The minimal automaton of L does not contain a C-counter.

Consequence
Membership for SF(C) boils down to separation for C.

The proof of 3 = 1 is particularly interesting:

» If there is no C-counter, build a “SF(C) expression” for L.
» First step: choose the basic languages in C.
» These are the languages in C that separate languages of the form,

ﬂ L(q,r) P a set of pairs of states.
(gr)eP
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Membership for SF(€) boils down to separation for C.
P., Zeitoun (2019) - Can also be deduced from Straubing (1979).
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The known transfer results
» Star-free closure (C — SF(C)).
Membership for SF(€) boils down to separation for C.
P., Zeitoun (2019) - Can also be deduced from Straubing (1979).
» Polynomial closure (€ +— Pol(C)).
Membership for Pol(€) boils down to separation for C.
P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).
» Boolean polynomial closure (€ +— BPol(C)).
Membership for BPol(€) boils down to covering for C.

P., Zeitoun (2024)
Covering: generalizes separation to more than two inputs.

Transfer theorems for Pol and BPol

31(<) —BXE1(<) — Z2(<) — BXE2(<) — X3(<) — BX3(<) — X4g(<) srrrnnnnnnnn

Separation and covering decidable Membership decidable



So, how do we deal with this separation stuff ?
Tackling the separation problem




The typical separation procedure for class C
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The typical separation procedure for class C

a

@— ) A
—@— ~@————@
Language Lg Language 1

We want to test C-separability for these two inputs.

Preliminary step:
View the two automata as a single one A = (Q, ).
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The typical separation procedure for class C

a
"6 A
- -~
Language Lg Language 1

We want to test C-separability for these two inputs.

Preliminary step:
View the two automata as a single one A = (Q, ).

Main procedure (specific to C):
Compute the set Je[A] € Q* of non-separable quadruples.
all (g,r,s,t) € Q* such that L(q,r) not C-separable from L(s,t)

Lg is not C-separable from L; iff there exists (q,r,s,t) € Je|A] s.t.,
e ¢ initial for Lg and r final for Lg.

e s initial for L and t final for Lq.




The typical separation procedure for class C

Typically: main procedure based on a least fixpoint.
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One can prove that Jy, [A] is the least subset of Q* such that:




An example, the class 31 (<) (existential FO: 3%)

One can prove that Jy, [A] is the least subset of Q* such that:
(1) If L(g,7) N L(s,t) # 0, then (q,7,s,t) € In, [A]

Generic to all classes €

Intersecting languages are not C-separable




An example, the class ¥;(<) (existential FO: 3)

One can prove that Jy, [A] is the least subset of Q* such that:
(1) If L(g,7) N L(s,t) # 0, then (q,7,s,t) € In, [A]
(2) If (¢, 7, s,t), (r,u,t,v) € I, [A], then (q,u,s,v) € Iy, [A]

Generic to all practical® classes C

If Ly is not C-separable from L; and Hy is not C-separable from Hi,
then LgHj is not C-separable from L, H;.

*

mild hypotheses on C are needed.




An example, the class ¥;(<) (existential FO: 3)

One can prove that Jy, [A] is the least subset of Q* such that:
(1) If L(q,r) N L(s,t) # 0, then (q,7,s,t) € Iy, [A]

(2) If (¢, 7, s,t), (r,u,t,v) € I, [A], then (q,u,s,v) € Iy, [A]
(8) If g,r,s € Q and L(r,s) # 0, then (q,q,r,s) € Ix,[A]

Specific to the particular class X1 (<)

A* is the only language in ¥;(<)
containing the empty word € € L(q, q).
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An example, the class ¥;(<) (existential FO: 3)

rOne can prove that Jx, [A] is the least subset of Q* such that:
(1) If L(q,r) N L(s,t) # 0, then (q,7,s,t) € Iy, [A]
(2) If (¢, 7, s,t), (r,u,t,v) € I, [A], then (q,u,s,v) € Iy, [A]
| (8) If g,r,s € Q and L(r,s) # 0, then (q,q,r,s) € Ix,[A]

Let us look at the example

a (I,b
) o
-@——@—~ -O——0——@-
Language Lg Language L1

e By (1), (q1,42,7r2,72) € 5, [A] since a € L(q1,g2) N L(r1,72).
e By (3), (q1,q1,71,72) € In, [A] and (g2, q2,72,73) € Ix, [A].
e By (2), it then follows that (q1,q2,71,73) € Ix, [A].

|Thus, Ly is not ¥;(<)-separable from L1.|




The difficulty of separation: a fixpoint concern

» Problem: the pattern seen for membership repeats itself. ..

Previous question: tied to a single fixed class D

Does D have decidable separation ?

New question: for an operator € — Op(C€) (family of classes)

Find hypotheses on € ensuring that Op(€) has decidable separation.
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» = go beyond separation (e.g., covering and beyond).



The difficulty of separation: a fixpoint concern

» Problem: the pattern seen for membership repeats itself. ..

Previous question: tied to a single fixed class D

Does D have decidable separation ?

New question: for an operator € — Op(C€) (family of classes)
Find hypotheses on € ensuring that Op(€) has decidable separation.

v

This is difficult.

» Least fixpoints often need more information than separation.

» = go beyond separation (e.g., covering and beyond).

Current results are restrict to very specific kinds of input classes.
(e.g. low levels in alternation hierarchies). J




Thank you !

(<) — BE1(<) — Z2(<) — BE2(<) — 23(<) — BX3(<) — Xa(<)

Separation and cbvering decidable Membership decidable



