The separation problem in automata theory

Thomas Place

Joint work with Marc Zeitoun

LaBRI, Bordeaux University
April 22, 2024
CIBD Workshop

Classes of regular languages and their investigation

Context: Classes of regular languages

- Setting: finite words and regular languages (alphabet A). Lots of automata in this talk!
- Goal: investigate sub-classes of the regular languages.

Context: Classes of regular languages

- Setting: finite words and regular languages (alphabet A). Lots of automata in this talk!
- Goal: investigate sub-classes of the regular languages.

Each sub-class is based on a piece of syntax defining its languages:
Two main descriptive syntaxes for specifying regular languages

1. Regular expressions $\left.\left(A^{*} a A^{*} b A^{*},(a b)^{*},\left(a(a b)^{*} b\right)^{*}\right), \ldots\right)$:

Each restriction of the regular expressions yields a sub-class.

Context: Classes of regular languages

- Setting: finite words and regular languages (alphabet A). Lots of automata in this talk!
- Goal: investigate sub-classes of the regular languages.

Each sub-class is based on a piece of syntax defining its languages:
Two main descriptive syntaxes for specifying regular languages

1. Regular expressions $\left.\left(A^{*} a A^{*} b A^{*},(a b)^{*},\left(a(a b)^{*} b\right)^{*}\right), \ldots\right)$:

Each restriction of the regular expressions yields a sub-class.
2. Monadic second-order logic. Büchi's theorem: $\mathrm{MSO}=$ REG:

Each restriction of MSO yields sub-class.

Context: the historical example, first-order logic

First-order logic over words (FO(<))

- Word: sequence of labeled positions that can be quantified:

$$
\begin{aligned}
& a b b b c a a a \\
& 01234567
\end{aligned}
$$

- Two kinds of predicates:

1. for each letter $a \in A, a(x)$ selects positions x with label " a ".
2. single binary predicate for the (strict) order: $x<y$.

- A sentence defines a language:

$$
\begin{gathered}
\exists x \exists y a(x) \wedge b(y) \wedge x<y \wedge(\forall z x<z<y \Rightarrow c(z)) \\
\text { defines } A^{*} a c^{*} b A^{*}
\end{gathered}
$$

Context: the historical example, first-order logic
First-order logic over words (FO(<))

- Word: sequence of labeled positions that can be quantified:

$$
\begin{aligned}
& a b b b c a a a \\
& 01234567
\end{aligned}
$$

- Two kinds of predicates:

1. for each letter $a \in A, a(x)$ selects positions x with label " a ".
2. single binary predicate for the (strict) order: $x<y$.

- A sentence defines a language:

$$
\begin{gathered}
\exists x \exists y a(x) \wedge b(y) \wedge x<y \wedge(\forall z x<z<y \Rightarrow c(z)) \\
\text { defines } A^{*} a c^{*} b A^{*}
\end{gathered}
$$

Informal objective

"Understand" the expressive power of $\mathrm{FO}(<)$:

- What regular languages can we express?
- What are those that we cannot express ?

Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

- contains \emptyset (empty language) and A^{*} (universal language).

Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

- contains \emptyset (empty language) and A^{*} (universal language).
- closed under union and complement.

$$
K, L \mapsto K \cup L \quad K \mapsto \bar{K}
$$

Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

- contains \emptyset (empty language) and A^{*} (universal language).
- closed under union and complement.

$$
K, L \mapsto K \cup L \quad K \mapsto \bar{K}
$$

- closed under marked concatenation:

$$
\text { for a letter } a \in A \quad K, L \mapsto K a L
$$

Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

- contains \emptyset (empty language) and A^{*} (universal language).
- closed under union and complement.

$$
K, L \mapsto K \cup L \quad K \mapsto \bar{K}
$$

- closed under marked concatenation:

$$
\text { for a letter } a \in A \quad K, L \mapsto K a L
$$

Examples of star free languages: $(A=\{a, b, c\})$.

$$
A^{*} a c^{*} b A^{*}=A^{*} a \overline{\left(A^{*} a A^{*} \cup A^{*} b A^{*}\right)} b A^{*}
$$

Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

- contains \emptyset (empty language) and A^{*} (universal language).
- closed under union and complement.

$$
K, L \mapsto K \cup L \quad K \mapsto \bar{K}
$$

- closed under marked concatenation:

$$
\text { for a letter } a \in A \quad K, L \mapsto K a L
$$

Examples of star free languages: $(A=\{a, b, c\})$.

$$
\begin{aligned}
A^{*} a c^{*} b A^{*} & =A^{*} a \overline{\left(A^{*} a A^{*} \cup A^{*} b A^{*}\right)} b A^{*} \\
\{\varepsilon\} & =\overline{A^{*} a A^{*} \cup A^{*} b A^{*} \cup A^{*} c A^{*}}
\end{aligned}
$$

Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

- contains \emptyset (empty language) and A^{*} (universal language).
- closed under union and complement.

$$
K, L \mapsto K \cup L \quad K \mapsto \bar{K}
$$

- closed under marked concatenation:

$$
\text { for a letter } a \in A \quad K, L \mapsto K a L
$$

Examples of star free languages: $(A=\{a, b, c\})$.

$$
\begin{aligned}
A^{*} a c^{*} b A^{*} & =A^{*} a \overline{\left(A^{*} a A^{*} \cup A^{*} b A^{*}\right)} b A^{*} \\
\{\varepsilon\} & =\overline{A^{*} a A^{*} \cup A^{*} b A^{*} \cup A^{*} c A^{*}} \\
(a b)^{*} & =\overline{A^{*} c A^{*} \cup b A^{*} \cup A^{*} a\{\varepsilon\} a A^{*} \cup A^{*} b\{\varepsilon\} b A^{*} \cup A^{*} a}
\end{aligned}
$$

Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

- contains \emptyset (empty language) and A^{*} (universal language).
- closed under union and complement.

$$
K, L \mapsto K \cup L \quad K \mapsto \bar{K}
$$

- closed under marked concatenation:

$$
\text { for a letter } a \in A \quad K, L \mapsto K a L
$$

Theorem of McNaughton-Papert (1971): SF $=\mathrm{FO}(<)$
Given a language L, the following are equivalent:

- L may be defined by a first-order logic sentence $(\mathrm{FO}(<))$.
- L is star-free (i.e. $L \in \mathrm{SF}$).

Context: what does it mean to "investigate" $\mathrm{FO}(<) / \mathrm{SF}$? (1)
Informal objective
"Understand" star-free languages and expressive power of $\mathrm{FO}(<)$.

Context: what does it mean to "investigate" $\mathrm{FO}(<) / \mathrm{SF}$?

Informal objective

"Understand" star-free languages and expressive power of $\mathrm{FO}(<)$.
Standard approach: membership algorithm for $\mathrm{SF}=\mathrm{FO}(<)$:

INPUT: A regular language L.

QUESTION:
Decide if L is star-free.
(i.e. Does $L \in \mathrm{SF}$?)

Context: what does it mean to "investigate" $\mathrm{FO}(<) / \mathrm{SF}$?

Informal objective

"Understand" star-free languages and expressive power of $\mathrm{FO}(<)$.
Standard approach: membership algorithm for $\mathrm{SF}=\mathrm{FO}(<)$:

INPUT: A regular language L.

QUESTION:

Decide if L is star-free.
(i.e. Does $L \in \mathrm{SF}$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.
2. The minimal automaton of L is counter-free.

Context: what does it mean to "investigate" $\mathrm{FO}(<) / \mathrm{SF}$?

Informal objective

"Understand" star-free languages and expressive power of $\mathrm{FO}(<)$.
Standard approach: membership algorithm for $\mathrm{SF}=\mathrm{FO}(<)$:

INPUT: A regular language L.

QUESTION:

Decide if L is star-free.
(i.e. Does $L \in \mathrm{SF}$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.
2. The minimal automaton of L is counter-free.

What are these things ? Why does this give a membership algorithm?

Counter inside an deterministic finite automaton
What is a counter inside an arbitrary automaton \mathcal{A} ?
Sequence of states q_{0}, \ldots, q_{n} such that,

- Non-trivial ($n \geq 1$).
- Pairwise distinct ($q_{i} \neq q_{j}$ for $i \neq j$).
- There exists a word w such that,

$$
q_{i} \xrightarrow{w} q_{i+1} \text { for } i<n \text { and } q_{n} \xrightarrow{w} q_{0} .
$$

$$
\underbrace{}_{n}
$$

Counter inside an deterministic finite automaton
What is a counter inside an arbitrary automaton \mathcal{A} ?
Sequence of states q_{0}, \ldots, q_{n} such that,

- Non-trivial $(n \geq 1)$.
- Pairwise distinct $\left(q_{i} \neq q_{j}\right.$ for $\left.i \neq j\right)$.
- There exists a word w such that,

$$
q_{i} \xrightarrow{w} q_{i+1} \quad \text { for } i<n \text { and } q_{n} \xrightarrow{w} q_{0} .
$$

Given a regular language L, the following are equivalent:

1. L is star-free.
2. The minimal automaton of L is counter-free.
(i.e., It does not contain a counter)

Counter inside an deterministic finite automaton - Examples
No counter:

Counter inside an deterministic finite automaton - Examples

No counter: Star-free

Counter inside an deterministic finite automaton - Examples

No counter: Star-free

There is a counter:

NOT Star-free

Counter inside an deterministic finite automaton - Examples

No counter: Star-free

There is a counter:

NOT Star-free

Counter inside an deterministic finite automaton - Examples
No counter:

Context: The membership problem
Membership algorithm for $\mathrm{SF}=\mathrm{FO}(<)$:

INPUT: A regular language L.

QUESTION:

Decide if L is star-free.
(i.e. Does $L \in \mathrm{SF}$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)
Given a regular language L, the following are equivalent:

1. L is star-free.
2. The minimal automaton of L is counter-free.

Context: The membership problem
Membership algorithm for $\mathrm{SF}=\mathrm{FO}(<)$:

INPUT: A regular language L.

QUESTION:

Decide if L is star-free.
(i.e. Does $L \in \mathrm{SF}$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.
2. The minimal automaton of L is counter-free.

Key point: Most of the insight on SF comes the proof of $2 \Rightarrow 1$.

- Hypothesis: Abstract on a recognizer of L.

Context: The membership problem
Membership algorithm for $\mathrm{SF}=\mathrm{FO}(<)$:

INPUT: A regular language L.

QUESTION:

Decide if L is star-free.
(i.e. Does $L \in \mathrm{SF}$?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.
2. The minimal automaton of L is counter-free.

Key point: Most of the insight on SF comes the proof of $2 \Rightarrow 1$.

- Hypothesis: Abstract on a recognizer of L.
- Objective: Build a SF expression or FO sentence for L.
- Byproduct: Normal forms for expressions and sentences.

What now?

1. Look at other significant classes (lots of historical examples):

- Piecewise testable languages/Existential first-order $\operatorname{logic}\left(\mathcal{B} \Sigma_{1}(<)\right)$. (Simon'75).
- Unambiguous languages/Two-variable first-order logic $\left(\mathrm{FO}^{2}(<)\right)$. (Schützenberger'76, Thérien-Wilke'98).

What now?

1. Look at other significant classes (lots of historical examples):

- Piecewise testable languages/Existential first-order $\operatorname{logic}\left(\mathcal{B} \Sigma_{1}(<)\right)$. (Simon'75).
- Unambiguous languages/Two-variable first-order logic $\left(\mathrm{FO}^{2}(<)\right)$. (Schützenberger'76, Thérien-Wilke'98).

2. Look at objects generalizing classes: operators.
3. Look at other significant classes (lots of historical examples):

- Piccowise testable languages/Existential first-order logic ($\mathcal{B} \Sigma_{1}(<)$). (Simon 1975).
- Unambiguous languages/Two-variable first-order logic $\left(\mathrm{FO}^{2}(<)\right)$. (Schützenberger 1976, Thérien-Wilke 1998).

2. Look at objects generalizing classes: operators.

Defining families of classes: operators

An operator? What's that?

- Operator: correspondence $\mathcal{C} \mapsto O p(\mathcal{C})$.

It builds a new class $O p(\mathcal{C})$ from every input class \mathcal{C}.

- A single operator specifies a family of closely related classes.

New objective: understand operators rather than single classes.

An operator? What's that?

- Operator: correspondence $\mathcal{C} \mapsto O p(\mathcal{C})$.

It builds a new class $O p(\mathcal{C})$ from every input class \mathcal{C}.

- A single operator specifies a family of closely related classes.

New objective: understand operators rather than single classes.

Why ? What are the "concrete" operators ?
Where are they coming from?

Operators - a first motivation: quantifier-alternation hierarchies of FO

A natural follow-up question: quantifier alternation

Intuition:

- High quantifier alternation: hard to understand.

$$
\begin{gathered}
\exists u \exists v \forall x \forall y \exists z\binom{a(u) \wedge a(v) \wedge u<v}{\wedge(u<x<z<y<v) \Rightarrow(\neg b(x) \vee \neg b(y) \vee c(z))} \\
\text { Defines: } \quad A^{*} a \overline{\left(A^{*} b \overline{\left(A^{*} c A^{*}\right)} b A^{*}\right)} a A^{*} .
\end{gathered}
$$

Validated by theory:

- Satisfiability is non-elementary hard for $\mathrm{FO}(<)$.
- Directly tied to quantifier alternation.

Natural idea:

- Look at membership for levels in quantifier alternation hierarchy.

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

$$
\underbrace{\underbrace{\boldsymbol{\Sigma}_{1}(<)}}_{\uparrow} \begin{array}{|c|c|}
\begin{array}{|l|l}
\exists x \exists y<y \wedge a(x) \wedge b(y) \\
A^{*} a A^{*} b A^{*}
\end{array}
\end{array}
$$

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\underbrace{\boldsymbol{B}^{*}}_{\uparrow} \\
& \underbrace{a a^{*} b b^{*}}_{(\exists \boldsymbol{x} \exists \boldsymbol{y} a(x) \wedge b(y)) \wedge \neg(\exists \boldsymbol{u} \exists \boldsymbol{v} u<v \wedge b(u) \wedge a(v))}
\end{aligned}
$$

Boolean combinations of $\Sigma_{1}(<)$ sentences

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

$$
\begin{aligned}
& \substack{\boldsymbol{\Sigma}_{\mathbf{1}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\underbrace{\exists^{*}}_{\uparrow} \\
\boldsymbol{\Sigma}_{\mathbf{2}}(<) \\
\exists \boldsymbol{x} \exists \boldsymbol{y} \forall z x<y \wedge a(x) \wedge b(y) \wedge(x<z<y \Rightarrow c(z)) \\
A^{*} a c^{*} b A^{*}}
\end{aligned}
$$

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\underbrace{\exists^{*}}_{\uparrow} \\
& \qquad \begin{array}{c}
\exists \boldsymbol{\boldsymbol { \Sigma } _ { \mathbf { 2 } } (<)}-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<) \\
\exists^{*} \forall^{*}
\end{array} \\
& A^{*} \forall z x<y \wedge a(x) \wedge b(y) \wedge(x<z<y \Rightarrow c(z))
\end{aligned}
$$

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\boldsymbol{\Sigma}_{\mathbf{2}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\boldsymbol{\Sigma}_{\mathbf{3}}(<) \\
& \text { ヨ* } \\
& \exists \boldsymbol{x} \exists \boldsymbol{y} \forall z x<y \wedge a(x) \wedge b(y) \wedge(x<z<y \Rightarrow c(z)) \\
& A^{*} a c^{*} b A^{*}
\end{aligned}
$$

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

$$
\begin{gathered}
\boldsymbol{\Sigma}_{\mathbf{1}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\underbrace{\boldsymbol{\Xi}_{\mathbf{*}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\boldsymbol{\Sigma}_{\mathbf{3}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{3}}(<)}_{\uparrow} \begin{array}{c}
\exists^{*} \forall^{*} \exists^{*}
\end{array} \\
\qquad \begin{array}{cc}
\exists \boldsymbol{x} \exists \boldsymbol{y} \forall z x<y \wedge a(x) \wedge b(y) \wedge(x<z<y \Rightarrow c(z)) \\
A^{*} a c^{*} b A^{*}
\end{array}
\end{gathered}
$$

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea：Classify the sentences according to quantifier alternation

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{\mathbf{2}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<)-\boldsymbol{\Sigma}_{\mathbf{3}}(<)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{3}}(<)-\boldsymbol{\Sigma}_{\mathbf{4}}(<) \\
& \text { ヨ* } \\
& \text { ヨ* } \forall^{*} \text { ヨ* } \\
& \exists^{*} \forall^{*} \exists^{*} \forall^{*} \\
& \exists \boldsymbol{x} \exists \boldsymbol{y} \forall z x<y \wedge a(x) \wedge b(y) \wedge(x<z<y \Rightarrow c(z)) \\
& A^{*} a c^{*} b A^{*}
\end{aligned}
$$

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<) \\
& \text { ヨ* } \\
& \exists * \forall^{*} \exists^{*} \\
& \exists^{*} \forall^{*} \exists^{*} \forall^{*}
\end{aligned}
$$

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<)
$$

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

The quantifier alternation hierarchy of $\mathrm{FO}(<)$

Idea: Classify the sentences according to quantifier alternation

Characterization by operators: concatenation hierarchies

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{2}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<)
$$

Construction process characterized by two operators (Thomas'82)

Characterization by operators: concatenation hierarchies

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{2}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<)
$$

Construction process characterized by two operators (Thomas'82)
Polynomial closure of a class \mathcal{C}
$\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Characterization by operators: concatenation hierarchies

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{2}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<) .
$$

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}
$\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Boolean closure of a class \mathcal{C}
$\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Complement:

$$
K \mapsto A^{*} \backslash K
$$

Characterization by operators: concatenation hierarchies

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{2}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<) .
$$

$\left\{\emptyset, A^{*}\right\}$

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C} $\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Boolean closure of a class \mathcal{C}
$\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Complement:

$$
K \mapsto A^{*} \backslash K
$$

Characterization by operators: concatenation hierarchies

```
\Sigma
%
{\emptyset, A* }
```

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C} $\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Boolean closure of a class \mathcal{C}
$\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Complement:

$$
K \mapsto A^{*} \backslash K
$$

Characterization by operators: concatenation hierarchies

```
\Sigma
    Bool
{\emptyset, A*}
```

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}
$\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Boolean closure of a class \mathcal{C}
$\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Complement:

$$
K \mapsto A^{*} \backslash K
$$

Characterization by operators: concatenation hierarchies

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}
$\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Boolean closure of a class \mathcal{C}
$\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Complement:

$$
K \mapsto A^{*} \backslash K
$$

Characterization by operators: concatenation hierarchies

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C} $\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Boolean closure of a class \mathcal{C}
$\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Complement:

$$
K \mapsto A^{*} \backslash K
$$

Characterization by operators: concatenation hierarchies

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C}
$\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Boolean closure of a class \mathcal{C}
$\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Complement:

$$
K \mapsto A^{*} \backslash K
$$

Characterization by operators: concatenation hierarchies

(

Construction process characterized by two operators (Thomas'82)

Polynomial closure of a class \mathcal{C} $\operatorname{Pol}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Marked concatenation:

$$
K, L, a \mapsto K a L
$$

Boolean closure of a class \mathcal{C}
$\operatorname{Bool}(\mathcal{C})$ is the closure of \mathcal{C} under,

- Union:

$$
K, L \mapsto K \cup L
$$

- Complement:

$$
K \mapsto A^{*} \backslash K
$$

Characterization by operators: concatenation hierarchies

Operators - a second motivation: natural variants of FO

Choosing a signature for first-order logic

Many "variants" of first-order logic: each associated to a signature.

- $\mathrm{FO}(<)$: linear ordering.

Choosing a signature for first-order logic

Many "variants" of first-order logic: each associated to a signature.

- $\mathrm{FO}(<)$: linear ordering.
- $\mathrm{FO}(<$, мод $)$: linear order, modular predicates.
for $d, m \in \mathbb{N}$, unary predicate $M_{d, m}(x)$ expressing, "the position x is congruent to d modulo m ".

Choosing a signature for first-order logic

Many "variants" of first-order logic: each associated to a signature.

- $\mathrm{FO}(<)$: linear ordering.
- $\mathrm{FO}(<$, мод $)$: linear order, modular predicates.
for $d, m \in \mathbb{N}$, unary predicate $M_{d, m}(x)$ expressing, "the position x is congruent to d modulo m ".
- $\mathrm{FO}(<$, амод $)$: linear order, alphabetic modular predicates.
for $a \in A$ and $d, m \in \mathbb{N}$, unary predicate $M_{d, m}^{a}(x)$ expressing, "number of a 's preceding x is congruent to d modulo m ".

Choosing a signature for first-order logic

Many "variants" of first-order logic: each associated to a signature.

- $\mathrm{FO}(<)$: linear ordering.
- $\mathrm{FO}(<$, мод $)$: linear order, modular predicates.
for $d, m \in \mathbb{N}$, unary predicate $M_{d, m}(x)$ expressing, "the position x is congruent to d modulo m ".
- $\mathrm{FO}(<$, амод $)$: linear order, alphabetic modular predicates.
for $a \in A$ and $d, m \in \mathbb{N}$, unary predicate $M_{d, m}^{a}(x)$ expressing, "number of a 's preceding x is congruent to d modulo m ".
- $\mathrm{FO}(<,+1)$: successor (binary predicate " $x+1=y$ ").
- Successor pointless for FO as $\mathrm{FO}(<)=\mathrm{FO}(<,+1)$.
- Important for alternation hierarchies: $\Sigma_{n}(<) \neq \Sigma_{n}(<,+1)$.

Another alternation hierarchy (successor)

$$
\boldsymbol{\Sigma}_{\mathbf{1}}(<,+1)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{1}}(<,+1)-\boldsymbol{\Sigma}_{\mathbf{2}}(<,+1)-\mathcal{B} \boldsymbol{\Sigma}_{\boldsymbol{2}}(<,+1)-\boldsymbol{\Sigma}_{\mathbf{3}}(<,+1)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{3}}(<,+1)-\boldsymbol{\Sigma}_{\mathbf{4}}(<,+1) .
$$

Another alternation hierarchy (successor)

$\left\{\emptyset,\{\varepsilon\}, A^{+}, A^{*}\right\}$

Another alternation hierarchy (successor)

$\left\{\emptyset,\{\varepsilon\}, A^{+}, A^{*}\right\}$ concatenation hierarchy of basis $\left\{\emptyset,\{\varepsilon\}, A^{+} A^{*}\right\}$ (the dot-depth hierarchy - Brzozowski, Cohen (1971))

Also transfer results from the "<" alternation hierarchy $\mathcal{B} \Sigma$ levels: Straubing (1985) Σ levels: Pin Weil (2002)

Yet another alternation hierarchy (MOD)

$$
\boldsymbol{\Sigma}_{1}(<, \mathrm{MOD})-\mathcal{B} \boldsymbol{\Sigma}_{1}(<, \mathrm{MOD})-\boldsymbol{\Sigma}_{2}(<, \mathrm{MOD})-\mathcal{B} \boldsymbol{\Sigma}_{2}(<, \mathrm{MOD})-\boldsymbol{\Sigma}_{3}(<, \mathrm{MOD}) \cdots \ldots . . \mathrm{FO}(<, \mathrm{MOD})
$$

Yet another alternation hierarchy (MOD)

Basis: MOD (finite unions of languages $\left(A^{q}\right)^{*} A^{r}$ for $r<q$)

$\boldsymbol{\Sigma}_{1}(<, M O D)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<, M O D)-\boldsymbol{\Sigma}_{\mathbf{2}}(<, M O D)-\mathcal{B} \boldsymbol{\Sigma}_{\mathbf{2}}(<, M O D)-\boldsymbol{\Sigma}_{\mathbf{3}}(<, \mathrm{MOD}) \ldots \ldots . \mathrm{FO}(<, \mathrm{MOD})$
Bool
Bool

Yet another alternation hierarchy (MOD)

Basis: MOD (finite unions of languages $\left(A^{q}\right)^{*} A^{r}$ for $r<q$)

Yet again another alternation hierarchy (Groups)

Not very natural from a logical perspective. Prominent from the concatenation hierarchy point of view.

Yet again another alternation hierarchy (Groups)

Basis: GR (group languages)

Yet again another alternation hierarchy (Groups)

Operators: what now?

- Operator: correspondence $\mathcal{C} \mapsto O p(\mathcal{C})$.

It builds a new class $O p(\mathcal{C})$ from every input class \mathcal{C}.

- A single operator specifies a family of closely related classes.

New aim: understand operators rather than single classes.

Operators: what now ?

- Operator: correspondence $\mathcal{C} \mapsto O p(\mathcal{C})$.

It builds a new class $O p(\mathcal{C})$ from every input class \mathcal{C}.

- A single operator specifies a family of closely related classes.

New aim: understand operators rather than single classes.
What does this mean in the context of membership?
Previous question: tied to a single fixed class \mathcal{D}
Does \mathcal{D} have decidable membership?

Operators: what now ?

- Operator: correspondence $\mathcal{C} \mapsto O p(\mathcal{C})$.

It builds a new class $O p(\mathcal{C})$ from every input class \mathcal{C}.

- A single operator specifies a family of closely related classes.

New aim: understand operators rather than single classes.
What does this mean in the context of membership?
Previous question: tied to a single fixed class \mathcal{D}
Does \mathcal{D} have decidable membership?

New question: for an operator $\mathcal{C} \mapsto \boldsymbol{O p}(\mathcal{C})$ (family of classes)
Find hypotheses on \mathcal{C} ensuring that $O p(\mathcal{C})$ has decidable membership.

In many (but not all) cases, the answer is separation.

Enter the separation problem.

The separation problem for a class of languages \mathcal{C}

INPUT: two regular languages.

The separation problem for a class of languages \mathcal{C}

INPUT: two regular languages.

QUESTION: Is L_{0} C-separable from L_{1} ?

We want $K \in \mathcal{C}$ such that,

- $L_{0} \subseteq K$.
- $L_{1} \cap K=\emptyset$.

The separation problem for a class of languages \mathcal{C}

INPUT: two regular languages.

QUESTION: Is L_{0} C-separable from L_{1} ?

We want $K \in \mathcal{C}$ such that,

- $L_{0} \subseteq K$.
- $L_{1} \cap K=\emptyset$.

The separation problem for a class of languages \mathcal{C}

INPUT: two regular languages.

QUESTION: Is L_{0} C-separable from L_{1} ?

We want $K \in \mathcal{C}$ such that,

- $L_{0} \subseteq K$.
- $L_{1} \cap K=\emptyset$.

The separation problem for a class of languages \mathcal{C}

INPUT: two regular languages.

A

QUESTION: Is L_{0} C-separable from L_{1} ?

We want $K \in \mathcal{C}$ such that,

- $L_{0} \subseteq K$.
- $L_{1} \cap K=\emptyset$.
- Reduction from membership. (special case $L_{1}=A^{*} \backslash L_{0}$)

The separation problem for a class of languages \mathcal{C}

INPUT: two regular languages.

QUESTION: Is L_{0} C-separable from L_{1} ?

We want $K \in \mathcal{C}$ such that,

- $L_{0} \subseteq K$.
- $L_{1} \cap K=\emptyset$.
- Reduction from membership. (special case $\left.L_{1}=A^{*} \backslash L_{0}\right)$

The separation problem for a class of languages \mathcal{C}

INPUT: two regular languages.

QUESTION: Is $L_{0} \mathcal{C}$-separable from L_{1} ?

We want $K \in \mathcal{C}$ such that,

- $L_{0} \subseteq K$.
- $L_{1} \cap K=\emptyset$.

- Reduction from membership. (special case $L_{1}=A^{*} \backslash L_{0}$)
- Boils down to interpolation. Interpolate L_{0} and $A^{*} \backslash L_{1}$: $K \in \mathcal{C}$ s.t. $L_{0} \subseteq K \subseteq A^{*} \backslash L_{1}$.

The case for separation

Separation: natural generalization of membership.

- Negative aspect:
© Usually harder than membership.
- Positive aspects:
;) More rewarding with respect to the insight gained on classes: \mathcal{C}-membership: detects the languages in \mathcal{C}. \mathcal{C}-separation: interaction of \mathcal{C} with all regular languages.

The case for separation

Separation: natural generalization of membership.

- Negative aspect:
;) Usually harder than membership.
- Positive aspects:
;) More rewarding with respect to the insight gained on classes:
\mathcal{C}-membership: detects the languages in \mathcal{C}.
\mathcal{C}-separation: interaction of \mathcal{C} with all regular languages.
© "transfer results" for operators (e.g., star-free closure).
Let us look at the second point.

Generic characterization of star-free closure using separation

Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input \mathcal{C} (with mild hypotheses)
L a regular language. The following properties are equivalent. 1. $L \in \mathrm{SF}(\mathrm{C})$.
2. $L \in \mathrm{FO}\left(\mathbb{I}_{\mathcal{C}}\right)\left(\mathbb{I}_{\mathfrak{C}}:\right.$ generic signature built from $\left.\mathcal{C}\right)$.
3. The minimal automaton of L does not contain a \mathcal{C}-counter.

Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input \mathcal{C} (with mild hypotheses)
L a regular language. The following properties are equivalent.

1. $L \in \mathrm{SF}(\mathrm{C})$.
2. $L \in \mathrm{FO}\left(\mathbb{I}_{\mathbb{C}}\right)\left(\mathbb{I}_{\mathfrak{C}}:\right.$ generic signature built from $\left.\mathcal{C}\right)$.
3. The minimal automaton of L does not contain a \mathcal{C}-counter.

What is a \mathcal{C}-counter inside an arbitrary DFA \mathcal{A} ?
Sequence of states q_{0}, \ldots, q_{n} such that,

- Non-trivial $(n \geq 1)$.
- Pairwise distinct $\left(q_{i} \neq q_{j}\right.$ for $\left.i \neq j\right)$.

Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input \mathcal{C} (with mild hypotheses)
L a regular language. The following properties are equivalent.

1. $L \in \mathrm{SF}(\mathrm{C})$.
2. $L \in \mathrm{FO}\left(\mathbb{I}_{\mathcal{C}}\right)\left(\mathbb{I}_{\mathfrak{C}}\right.$: generic signature built from $\left.\mathcal{C}\right)$.
3. The minimal automaton of L does not contain a \mathcal{C}-counter.

What is a \mathcal{C}-counter inside an arbitrary DFA \mathcal{A} ?
Sequence of states q_{0}, \ldots, q_{n} such that,

- Non-trivial $(n \geq 1)$.
- Pairwise distinct $\left(q_{i} \neq q_{j}\right.$ for $\left.i \neq j\right)$.
- $\bigcap_{i \leq n} L\left(q_{i}, q_{i}\right)$ not \mathcal{C}-separable from $\bigcap_{i<n} L\left(q_{i}, q_{i+1}\right) \cap L\left(q_{n}, q_{0}\right)$

$$
\left(L(q, r)=\left\{w \in A^{*} \mid q \xrightarrow{w} r\right\}\right)
$$

Generic characterization of star-free closure (SF(C))
Characterization for an arbitrary input \mathcal{C} (with mild hypotheses)
L a regular language. The following properties are equivalent.

1. $L \in \mathrm{SF}(\mathrm{C})$.
2. $L \in \mathrm{FO}\left(\mathbb{I}_{\mathbb{C}}\right)\left(\mathbb{I}_{\mathfrak{C}}:\right.$ generic signature built from $\left.\mathcal{C}\right)$.
3. The minimal automaton of L does not contain a \mathcal{C}-counter.

Consequence

Membership for $\mathrm{SF}(\mathcal{C})$ boils down to separation for \mathfrak{C}.
The proof of $3 \Rightarrow 1$ is particularly interesting:

- If there is no \mathcal{C}-counter, build a " $\mathrm{SF}(\mathcal{C})$ expression" for L.
- First step: choose the basic languages in \mathcal{C}.
- These are the languages in \mathcal{C} that separate languages of the form,

$$
\bigcap_{(q, r) \in P} L(q, r) \quad P \text { a set of pairs of states. }
$$

The known transfer results

- Star-free closure ($(\mathcal{C} \mapsto \mathrm{SF}(\mathcal{C})$).

Membership for $\operatorname{SF}(\mathcal{C})$ boils down to separation for \mathcal{C}. P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

The known transfer results

- Star-free closure ($\mathcal{C} \mapsto \mathrm{SF}(\mathcal{C})$).

Membership for $\operatorname{SF}(\mathcal{C})$ boils down to separation for \mathcal{C}. P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

- Polynomial closure $(\mathcal{C} \mapsto \operatorname{Pol}(\mathcal{C})$).

Membership for $\operatorname{Pol}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).

The known transfer results

- Star-free closure ($\mathcal{C} \mapsto \mathrm{SF}(\mathcal{C})$).

Membership for $\operatorname{SF}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

- Polynomial closure $(\mathcal{C} \mapsto \operatorname{Pol}(\mathcal{C}))$.

Membership for $\operatorname{Pol}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).

- Boolean polynomial closure ($\mathcal{C} \mapsto \operatorname{BPol}(\mathcal{C})$).

Membership for $\mathrm{BPol}(\mathcal{C})$ boils down to covering for \mathcal{C}.
P., Zeitoun (2024)

Covering: generalizes separation to more than two inputs.

The known transfer results

- Star-free closure ($\mathcal{C} \mapsto \mathrm{SF}(\mathcal{C})$).

Membership for $\operatorname{SF}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

- Polynomial closure $(\mathcal{C} \mapsto \operatorname{Pol}(\mathcal{C}))$.

Membership for $\operatorname{Pol}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).

- Boolean polynomial closure ($\mathcal{C} \mapsto \operatorname{BPol}(\mathcal{C})$).

Membership for $\mathrm{BPol}(\mathcal{C})$ boils down to covering for \mathcal{C}.
P., Zeitoun (2024)

Covering: generalizes separation to more than two inputs.

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{2}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<) .
$$

- Star-free closure ($\mathcal{C} \mapsto \mathrm{SF}(\mathcal{C})$).

Membership for $\operatorname{SF}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

- Polynomial closure $(\mathcal{C} \mapsto \operatorname{Pol}(\mathcal{C})$).

Membership for $\operatorname{Pol}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).

- Boolean polynomial closure ($\mathcal{C} \mapsto \operatorname{BPol}(\mathcal{C})$).

Membership for $\mathrm{BPol}(\mathcal{C})$ boils down to covering for \mathcal{C}.
P., Zeitoun (2024)

Covering: generalizes separation to more than two inputs.

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{2}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<)
$$

Separation and covering decidable Membership decidable

- Star-free closure ($\mathcal{C} \mapsto \mathrm{SF}(\mathcal{C})$).

Membership for $\operatorname{SF}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

- Polynomial closure $(\mathcal{C} \mapsto \operatorname{Pol}(\mathcal{C}))$.

Membership for $\operatorname{Pol}(\mathcal{C})$ boils down to separation for \mathcal{C}.
P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).

- Boolean polynomial closure ($\mathcal{C} \mapsto \operatorname{BPol}(\mathcal{C})$).

Membership for $\mathrm{BPol}(\mathcal{C})$ boils down to covering for \mathcal{C}.
P., Zeitoun (2024)

Covering: generalizes separation to more than two inputs.

Transfer theorems for Pol and BPol

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{2}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<)
$$

Separation and covering decidable Membership decidable

So, how do we deal with this separation stuff ? Tackling the separation problem

The typical separation procedure for class \circlearrowright

Language L_{0}

Language L_{1}

We want to test \mathcal{C}-separability for these two inputs.

The typical separation procedure for class \circlearrowright

Language L_{0}
Language L_{1}
We want to test \mathcal{C}-separability for these two inputs.
Preliminary step:
View the two automata as a single one $\mathcal{A}=(Q, \delta)$.

The typical separation procedure for class \mathcal{C}

Language $L_{0} \quad$ Language L_{1}
We want to test \mathcal{C}-separability for these two inputs.
Preliminary step:
View the two automata as a single one $\mathcal{A}=(Q, \delta)$.
Main procedure (specific to \mathcal{C}):
Compute the set $\mathcal{J}_{\mathcal{C}}[\mathcal{A}] \subseteq Q^{4}$ of non-separable quadruples. all $(q, r, s, t) \in Q^{4}$ such that $L(q, r)$ not \mathcal{C}-separable from $L(s, t)$

The typical separation procedure for class \mathcal{C}

Language L_{0}
Language L_{1}
We want to test \mathcal{C}-separability for these two inputs.
Preliminary step:
View the two automata as a single one $\mathcal{A}=(Q, \delta)$.
Main procedure (specific to \mathcal{C}):
Compute the set $\mathcal{J}_{\mathcal{C}}[\mathcal{A}] \subseteq Q^{4}$ of non-separable quadruples. all $(q, r, s, t) \in Q^{4}$ such that $L(q, r)$ not \mathcal{C}-separable from $L(s, t)$
L_{0} is not \mathcal{C}-separable from L_{1} iff there exists $(q, r, s, t) \in \mathcal{J}_{\mathcal{C}}[\mathcal{A}]$ s.t.,

- q initial for $L_{0} \quad$ and $\quad r$ final for L_{0}.
- s initial for $L_{1} \quad$ and $\quad t$ final for L_{1}.

The typical separation procedure for class \circlearrowright

$$
\text { Language } L_{0} \quad \text { Language } L_{1}
$$

Prel Typically: main procedure based on a least fixpoint. Viev

Main procedure (specific to \mathcal{C}):
Compute the set $\mathcal{J}_{\mathcal{C}}[\mathcal{A}] \subseteq Q^{4}$ of non-separable quadruples. all $(q, r, s, t) \in Q^{4}$ such that $L(q, r)$ not \mathcal{C}-separable from $L(s, t)$
L_{0} is not \mathcal{C}-separable from L_{1} iff there exists $(q, r, s, t) \in \mathcal{J}_{\mathcal{C}}[\mathcal{A}]$ s.t.,

- q initial for L_{0} and r final for L_{0}.
- s initial for $L_{1} \quad$ and $\quad t$ final for L_{1}.

An example, the class $\Sigma_{1}(<)$ (existential FO: $\left.\exists^{*}\right)$

One can prove that $\mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ is the least subset of Q^{4} such that:

An example, the class $\Sigma_{1}(<)$ (existential FO: $\left.\exists^{*}\right)$

One can prove that $\mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ is the least subset of Q^{4} such that:
(1) If $L(q, r) \cap L(s, t) \neq \emptyset$, then $(q, r, s, t) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$

Generic to all classes \mathcal{C}

Intersecting languages are not \mathcal{C}-separable

An example, the class $\Sigma_{1}(<)$ (existential FO: $\left.\exists^{*}\right)$

One can prove that $\mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ is the least subset of Q^{4} such that:
(1) If $L(q, r) \cap L(s, t) \neq \emptyset$, then $(q, r, s, t) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(2) If $(q, r, s, \boldsymbol{t}),(r, u, \boldsymbol{t}, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$, then $(q, u, s, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$

Generic to all practical* classes \mathcal{C}
If L_{0} is not \mathcal{C}-separable from L_{1} and H_{0} is not \mathcal{C}-separable from H_{1}, then $L_{0} H_{0}$ is not \mathcal{C}-separable from $L_{1} H_{1}$.

An example, the class $\Sigma_{1}(<)$ (existential FO: $\left.\exists^{*}\right)$

One can prove that $\mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ is the least subset of Q^{4} such that:
(1) If $L(q, r) \cap L(s, t) \neq \emptyset$, then $(q, r, s, t) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(2) If $(q, r, s, \boldsymbol{t}),(r, u, \boldsymbol{t}, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$, then $(q, u, s, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(3) If $q, r, s \in Q$ and $L(r, s) \neq \emptyset$, then $(q, q, r, s) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$

Specific to the particular class $\Sigma_{1}(<)$
A^{*} is the only language in $\Sigma_{1}(<)$ containing the empty word $\varepsilon \in L(q, q)$.

An example, the class $\Sigma_{1}(<)$ (existential FO: \exists^{*})

One can prove that $\mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ is the least subset of Q^{4} such that:
(1) If $L(q, r) \cap L(s, t) \neq \emptyset$, then $(q, r, s, t) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(2) If $(q, r, s, t),(r, u, \boldsymbol{t}, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$, then $(q, u, s, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(3) If $q, r, s \in Q$ and $L(r, s) \neq \emptyset$, then $(q, q, r, s) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$

Let us look at the example

An example, the class $\Sigma_{1}(<)$ (existential FO: $\left.\exists^{*}\right)$

One can prove that $\mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ is the least subset of Q^{4} such that:
(1) If $L(q, r) \cap L(s, t) \neq \emptyset$, then $(q, r, s, t) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(2) If $(q, r, s, \boldsymbol{t}),(r, u, \boldsymbol{t}, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$, then $(q, u, s, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(3) If $q, r, s \in Q$ and $L(r, s) \neq \emptyset$, then $(q, q, r, s) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$

Let us look at the example

- By (1), $\left(q_{1}, q_{2}, r_{2}, r_{2}\right) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ since $a \in L\left(q_{1}, q_{2}\right) \cap L\left(r_{1}, r_{2}\right)$.

An example, the class $\Sigma_{1}(<)$ (existential FO: $\left.\exists^{*}\right)$

One can prove that $\mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ is the least subset of Q^{4} such that:
(1) If $L(q, r) \cap L(s, t) \neq \emptyset$, then $(q, r, s, t) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(2) If $(q, r, s, \boldsymbol{t}),(r, u, \boldsymbol{t}, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$, then $(q, u, s, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(3) If $q, r, s \in Q$ and $L(r, s) \neq \emptyset$, then $(q, q, r, s) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$

Let us look at the example

- By (1), $\left(q_{1}, q_{2}, r_{2}, r_{2}\right) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ since $a \in L\left(q_{1}, q_{2}\right) \cap L\left(r_{1}, r_{2}\right)$.
- $\operatorname{By}(3),\left(q_{1}, q_{1}, r_{1}, r_{2}\right) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ and $\left(q_{2}, q_{2}, r_{2}, r_{3}\right) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$.

An example, the class $\Sigma_{1}(<)$ (existential FO: \exists^{*})

One can prove that $\mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ is the least subset of Q^{4} such that:
(1) If $L(q, r) \cap L(s, t) \neq \emptyset$, then $(q, r, s, t) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(2) If $(q, r, s, \boldsymbol{t}),(r, u, \boldsymbol{t}, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$, then $(q, u, s, v) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$
(3) If $q, r, s \in Q$ and $L(r, s) \neq \emptyset$, then $(q, q, r, s) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$

Let us look at the example

- By (1), $\left(q_{1}, q_{2}, r_{2}, r_{2}\right) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ since $a \in L\left(q_{1}, q_{2}\right) \cap L\left(r_{1}, r_{2}\right)$.
- $\operatorname{By}(3),\left(q_{1}, q_{1}, r_{1}, r_{2}\right) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$ and $\left(q_{2}, q_{2}, r_{2}, r_{3}\right) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$.
- By (2), it then follows that $\left(q_{1}, q_{2}, r_{1}, r_{3}\right) \in \mathcal{J}_{\Sigma_{1}}[\mathcal{A}]$.

Thus, L_{0} is not $\Sigma_{1}(<)$-separable from L_{1}.

The difficulty of separation: a fixpoint concern

- Problem: the pattern seen for membership repeats itself. . .

Previous question: tied to a single fixed class \mathcal{D}
Does \mathcal{D} have decidable separation?

New question: for an operator $\mathcal{C} \mapsto O p(\mathcal{C})$ (family of classes)
Find hypotheses on \mathcal{C} ensuring that $O p(\mathcal{C})$ has decidable separation.

The difficulty of separation: a fixpoint concern

- Problem: the pattern seen for membership repeats itself. . .

Previous question: tied to a single fixed class \mathcal{D}

Does \mathcal{D} have decidable separation?

New question: for an operator $\mathcal{C} \mapsto O p(\mathcal{C})$ (family of classes)
Find hypotheses on \mathcal{C} ensuring that $O p(\mathcal{C})$ has decidable separation.

This is difficult.

- Least fixpoints often need more information than separation.
- \Rightarrow go beyond separation (e.g., covering and beyond).

The difficulty of separation: a fixpoint concern

- Problem: the pattern seen for membership repeats itself. . .

Previous question: tied to a single fixed class \mathcal{D}

Does \mathcal{D} have decidable separation?

New question: for an operator $\mathcal{C} \mapsto O p(\mathcal{C})$ (family of classes)
Find hypotheses on \mathcal{C} ensuring that $O p(\mathcal{C})$ has decidable separation.
This is difficult.

- Least fixpoints often need more information than separation.
- \Rightarrow go beyond separation (e.g., covering and beyond).

Current results are restrict to very specific kinds of input classes. (e.g. low levels in alternation hierarchies).

Thank you!

$$
\boldsymbol{\Sigma}_{1}(<)-\mathcal{B} \boldsymbol{\Sigma}_{1}(<)-\boldsymbol{\Sigma}_{2}(<)-\mathcal{B} \boldsymbol{\Sigma}_{2}(<)-\boldsymbol{\Sigma}_{3}(<)-\mathcal{B} \boldsymbol{\Sigma}_{3}(<)-\boldsymbol{\Sigma}_{4}(<) \ldots \ldots \ldots \ldots
$$

Separation and covering decidable Membership decidable

