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▶ Goal: investigate sub-classes of the regular languages.

Each sub-class is based on a piece of syntax defining its languages:

Two main descriptive syntaxes for specifying regular languages

1. Regular expressions (A∗aA∗bA∗, (ab)∗, (a(ab)∗b)∗),. . . ):
Each restriction of the regular expressions yields a sub-class.

2. Monadic second-order logic. Büchi’s theorem: MSO = REG:
Each restriction of MSO yields sub-class.



Context: the historical example, first-order logic

First-order logic over words (FO(<))

▶ Word: sequence of labeled positions that can be quantified:
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▶ A sentence defines a language:
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First-order logic over words (FO(<))

▶ Word: sequence of labeled positions that can be quantified:

a b b b c a a a ∈ A∗

0 1 2 3 4 5 6 7

▶ Two kinds of predicates:

1. for each letter a ∈ A, a(x) selects positions x with label “a”.
2. single binary predicate for the (strict) order: x < y.

▶ A sentence defines a language:

∃x∃y a(x) ∧ b(y) ∧ x < y ∧ (∀z x < z < y ⇒ c(z))
defines A∗ac∗bA∗

Informal objective

“Understand” the expressive power of FO(<):

▶ What regular languages can we express?

▶ What are those that we cannot express ?
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Context: the historical example, star-free languages

The class of star-free languages (SF) is the least one such that:

▶ contains ∅ (empty language) and A∗ (universal language).

▶ closed under union and complement.

K,L 7→ K ∪ L K 7→ K

▶ closed under marked concatenation:

for a letter a ∈ A K,L 7→ KaL

Theorem of McNaughton-Papert (1971): SF = FO(<)

Given a language L, the following are equivalent:

▶ L may be defined by a first-order logic sentence (FO(<)) .

▶ L is star-free (i.e. L ∈ SF).
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Informal objective

“Understand” star-free languages and expressive power of FO(<).

Standard approach: membership algorithm for SF = FO(<):

INPUT: A regular language L.

q0 q1

q2

q3

b

a

a

b

ba

QUESTION:

Decide if L is star-free.
(i.e. Does L ∈ SF ?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.

2. The minimal automaton of L is counter-free.

What are these things ? Why does this give a membership algorithm ?
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Sequence of states q0, . . . , qn such that,
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• Pairwise distinct (qi ̸= qj for i ̸= j).

• There exists a word w such that,
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w

w
w

w

w

Given a regular language L, the following are equivalent:

1. L is star-free.

2. The minimal automaton of L is counter-free.
(i.e., It does not contain a counter)



Counter inside an deterministic finite automaton - Examples

(ab)∗

q0 q1

a

b

No counter:
Star-free



Counter inside an deterministic finite automaton - Examples

(ab)∗

q0 q1

a

b

No counter:
Star-free

(baba)∗

r0

r1

r2

r3

b a

ba



Counter inside an deterministic finite automaton - Examples

(ab)∗

q0 q1

a

b

No counter:
Star-free

(baba)∗

r0

r1

r2

r3

b a

ba

There is a counter:

r0 r2

ba

ba

NOT Star-free



Counter inside an deterministic finite automaton - Examples

(ab)∗

q0 q1

a

b

No counter:
Star-free

(baba)∗

r0

r1

r2

r3

b a

ba

There is a counter:

r0 r2

ba

ba

NOT Star-free

(aba+ bab)∗

s0

s1

s2

s3

s4

a

b

a

b

a

b



Counter inside an deterministic finite automaton - Examples

(ab)∗

q0 q1
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Membership algorithm for SF = FO(<):

INPUT: A regular language L.

q0 q1

q2

q3

b

a

a

b

ba

QUESTION:

Decide if L is star-free.
(i.e. Does L ∈ SF ?)

Solution: Schützenberger (1965), McNaughton-Papert (1971)

Given a regular language L, the following are equivalent:

1. L is star-free.

2. The minimal automaton of L is counter-free.

Key point: Most of the insight on SF comes the proof of 2 ⇒ 1.

▶ Hypothesis: Abstract on a recognizer of L.
▶ Objective: Build a SF expression or FO sentence for L.
▶ Byproduct: Normal forms for expressions and sentences.
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An operator ? What’s that ?

▶ Operator: correspondence C 7→ Op(C).
It builds a new class Op(C) from every input class C.

▶ A single operator specifies a family of closely related classes.

New objective: understand operators rather than single classes.

Why ? What are the “concrete” operators ?
Where are they coming from ?
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A natural follow-up question: quantifier alternation

Intuition:

▶ High quantifier alternation: hard to understand.

∃u∃v ∀x∀y ∃z

(

a(u) ∧ a(v) ∧ u < v

∧ (u < x < z < y < v) ⇒ (¬b(x) ∨ ¬b(y) ∨ c(z))

)

Defines: A∗a
(

A∗b(A∗cA∗)bA∗

)

aA∗.

Validated by theory:

▶ Satisfiability is non-elementary hard for FO(<).

▶ Directly tied to quantifier alternation.

Natural idea:

▶ Look at membership for levels in quantifier alternation hierarchy.
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Sea of the open

problems
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Construction process characterized by two operators (Thomas’82)

Polynomial closure of a class C

Pol(C) is the closure of C under,

• Union:

K,L 7→ K ∪ L.

• Marked concatenation:

K,L, a 7→ KaL.

Boolean closure of a class C

Bool(C) is the closure of C under,

• Union:

K,L 7→ K ∪ L.

• Complement:

K 7→ A∗ \K.

Natural next objective:

Generic analysis of the operators Pol and Bool.
(and their composition BPol)
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Choosing a signature for first-order logic

Many “variants” of first-order logic: each associated to a signature.

▶ FO(<): linear ordering.

▶ FO(<,MOD): linear order, modular predicates.

for d,m ∈ N, unary predicate Md,m(x) expressing,
“the position x is congruent to d modulo m”.

▶ FO(<, AMOD): linear order, alphabetic modular predicates.

for a ∈ A and d,m ∈ N, unary predicate Ma
d,m(x) expressing,

“number of a’s preceding x is congruent to d modulo m”.

▶ FO(<,+1): successor (binary predicate “x+ 1 = y”).

▶ Successor pointless for FO as FO(<) = FO(<,+1).

▶ Important for alternation hierarchies: Σn(<) ̸= Σn(<,+1).
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{∅, {ε}, A+, A∗}

P
ol

Bool

Pol

Bool

Pol

Bool

Pol

Exact correspondence with the
concatenation hierarchy of basis {∅, {ε}, A+A∗}
(the dot-depth hierarchy - Brzozowski, Cohen (1971))

Knast (1983)

Pin, Weil (1995)

Glaßer, Schmitz (2000)
BΣ levels: Straubing (1985)

Σ levels: Pin Weil (2002)

Also transfer results from

the “<” alternation hierarchy
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Σ1(<,MOD) BΣ1(<,MOD) Σ2(<,MOD) BΣ2(<,MOD) Σ3(<,MOD) FO(<,MOD)

Basis: MOD (finite unions of languages (Aq)∗Ar for r < q)

P
ol

Bool

Pol

Bool

Pol

SF (star-free closure)

Chaubard, Pin, Straubing (2006)

Kufleitner, Walter (2013)

P., Zeitoun (2019)

P., Zeitoun (2024)
Barrington, Compton,

Straubing, Thérien (1992)
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Yet again another alternation hierarchy (Groups)

Σ1(<, PG) BΣ1(<, PG) Σ2(<, PG) BΣ2(<, PG) Σ3(<, PG) FO(<, PG)

Basis: GR (group languages)

P
ol

Bool

Pol

Bool

Pol

SF (star-free
closure)

Pin Weil (2002)

Henckell, Margolis,

Pin, Rhodes (1991)

P., Zeitoun (2019)

P., Zeitoun (2024)

Karnofsky, Rhodes (1982)Not very natural from a logical perspective.
Prominent from the concatenation hierarchy point of view.

Natural variants captured by operators

Generic analysis is desirable for,

• Polynomial closure: C 7→ Pol(C).

Union: K,L 7→ K ∪ L

Marked concatenation: K,L, a 7→ KaL

• Boolean polynomial closure: C 7→ BPol(C).

BPol(C) = Bool(Pol(C))

• Star-free closure: C 7→ SF(C).

Union: K,L 7→ K ∪ L

Complement: K 7→ A∗ \K

Marked concatenation: K,L, a 7→ KaL
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Operators: what now ?

▶ Operator: correspondence C 7→ Op(C).
It builds a new class Op(C) from every input class C.

▶ A single operator specifies a family of closely related classes.

New aim: understand operators rather than single classes.

What does this mean in the context of membership?

Previous question: tied to a single fixed class D

Does D have decidable membership?

New question: for an operator C 7→ Op(C) (family of classes)

Find hypotheses on C ensuring that Op(C) has decidable membership.

In many (but not all) cases, the answer is separation.



Enter the separation problem.
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INPUT: two regular languages. QUESTION: Is L0 C-separable

from L1?

We want K ∈ C such that,

• L0 ⊆ K.

• L1 ∩K = ∅.

L1 = A∗ \ L0

A∗

L0

• Reduction from membership.

(special case L1 = A∗ \ L0)

Only separator candidate: L0 itself



The separation problem for a class of languages C

a

a

L0

a

bb b b

L1

INPUT: two regular languages. QUESTION: Is L0 C-separable

from L1?

We want K ∈ C such that,

• L0 ⊆ K.

• L1 ∩K = ∅.

A∗

L0

L1

K belongs to C

• Reduction from membership.

(special case L1 = A∗ \ L0)

• Boils down to interpolation.

Interpolate L0 and A∗ \ L1:

K ∈ C s.t. L0 ⊆ K ⊆ A∗ \ L1.



The case for separation

Separation: natural generalization of membership.

▶ Negative aspect:

Usually harder than membership.

▶ Positive aspects:

More rewarding with respect to the insight gained on classes:
C-membership: detects the languages in C.
C-separation: interaction of C with all regular languages.



The case for separation

Separation: natural generalization of membership.

▶ Negative aspect:

Usually harder than membership.

▶ Positive aspects:

More rewarding with respect to the insight gained on classes:
C-membership: detects the languages in C.
C-separation: interaction of C with all regular languages.
“transfer results” for operators (e.g., star-free closure).

Let us look at the second point.



Generic characterization
of star-free closure using separation
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Characterization for an arbitrary input C (with mild hypotheses)

L a regular language. The following properties are equivalent.

1. L ∈ SF(C).

2. L ∈ FO(IC) (IC: generic signature built from C).

3. The minimal automaton of L does not contain a C-counter.
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Generic characterization of star-free closure (SF(C))

Characterization for an arbitrary input C (with mild hypotheses)

L a regular language. The following properties are equivalent.

1. L ∈ SF(C).

2. L ∈ FO(IC) (IC: generic signature built from C).

3. The minimal automaton of L does not contain a C-counter.

What is a C-counter inside an arbitrary DFA A?

Sequence of states q0, . . . , qn such that,

• Non-trivial (n ≥ 1).

• Pairwise distinct (qi ̸= qj for i ̸= j).

•
⋂

i≤n L(qi, qi) not C-separable from
⋂

i<n L(qi, qi+1) ∩ L(qn, q0)

(L(q, r) = {w ∈ A∗ | q
w
−→ r})

q0

q1
q2

q3

q4

qn



Generic characterization of star-free closure (SF(C))

Characterization for an arbitrary input C (with mild hypotheses)

L a regular language. The following properties are equivalent.

1. L ∈ SF(C).

2. L ∈ FO(IC) (IC: generic signature built from C).

3. The minimal automaton of L does not contain a C-counter.

Consequence

Membership for SF(C) boils down to separation for C.

The proof of 3 ⇒ 1 is particularly interesting:

▶ If there is no C-counter, build a “SF(C) expression” for L.
▶ First step: choose the basic languages in C.
▶ These are the languages in C that separate languages of the form,

⋂

(q,r)∈P

L(q, r) P a set of pairs of states.
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The known transfer results

▶ Star-free closure (C 7→ SF(C)).

Membership for SF(C) boils down to separation for C.

P., Zeitoun (2019) - Can also be deduced from Straubing (1979).

▶ Polynomial closure (C 7→ Pol(C)).

Membership for Pol(C) boils down to separation for C.

P., Zeitoun (2014) - Can also be deduced from Pin, Weil (1997).

▶ Boolean polynomial closure (C 7→ BPol(C)).

Membership for BPol(C) boils down to covering for C.

P., Zeitoun (2024)
Covering: generalizes separation to more than two inputs.

Separation and covering decidable Membership decidable

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<)

Transfer theorems for Pol and BPol



So, how do we deal with this separation stuff ?
Tackling the separation problem
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• q initial for L0 and r final for L0.

• s initial for L1 and t final for L1.



The typical separation procedure for class C

q1 q2
a

a

Language L0

r1 r2 r3
b b

a, b

Language L1

We want to test C-separability for these two inputs.

Preliminary step:

View the two automata as a single one A = (Q, δ).

Main procedure (specific to C):

Compute the set IC[A] ⊆ Q4 of non-separable quadruples.

all (q, r, s, t) ∈ Q4 such that L(q, r) not C-separable from L(s, t)

L0 is not C-separable from L1 iff there exists (q, r, s, t) ∈ IC[A] s.t.,

• q initial for L0 and r final for L0.

• s initial for L1 and t final for L1.

Typically: main procedure based on a least fixpoint.
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One can prove that IΣ1
[A] is the least subset of Q4 such that:
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(1) If L(q, r) ∩ L(s, t) ̸= ∅, then (q, r, s, t) ∈ IΣ1
[A]

Intersecting languages are not C-separable

Generic to all classes C



An example, the class Σ1(<) (existential FO: ∃∗)

One can prove that IΣ1
[A] is the least subset of Q4 such that:

(1) If L(q, r) ∩ L(s, t) ̸= ∅, then (q, r, s, t) ∈ IΣ1
[A]

(2) If (q, r, s, t), (r, u, t, v) ∈ IΣ1
[A], then (q, u, s, v) ∈ IΣ1

[A]

If L0 is not C-separable from L1 and H0 is not C-separable from H1,
then L0H0 is not C-separable from L1H1.

Generic to all practical∗ classes C

∗ mild hypotheses on C are needed.



An example, the class Σ1(<) (existential FO: ∃∗)

One can prove that IΣ1
[A] is the least subset of Q4 such that:

(1) If L(q, r) ∩ L(s, t) ̸= ∅, then (q, r, s, t) ∈ IΣ1
[A]

(2) If (q, r, s, t), (r, u, t, v) ∈ IΣ1
[A], then (q, u, s, v) ∈ IΣ1

[A]

(3) If q, r, s ∈ Q and L(r, s) ̸= ∅, then (q, q, r, s) ∈ IΣ1
[A]

A∗ is the only language in Σ1(<)
containing the empty word ε ∈ L(q, q).

Specific to the particular class Σ1(<)
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One can prove that IΣ1
[A] is the least subset of Q4 such that:
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An example, the class Σ1(<) (existential FO: ∃∗)

One can prove that IΣ1
[A] is the least subset of Q4 such that:

(1) If L(q, r) ∩ L(s, t) ̸= ∅, then (q, r, s, t) ∈ IΣ1
[A]

(2) If (q, r, s, t), (r, u, t, v) ∈ IΣ1
[A], then (q, u, s, v) ∈ IΣ1

[A]

(3) If q, r, s ∈ Q and L(r, s) ̸= ∅, then (q, q, r, s) ∈ IΣ1
[A]

Let us look at the example

q1 q2
a

a

Language L0

r1 r2 r3
b b

a, b

Language L1

• By (1), (q1, q2, r2, r2) ∈ IΣ1
[A] since a ∈ L(q1, q2) ∩ L(r1, r2).

• By (3), (q1, q1, r1, r2) ∈ IΣ1
[A] and (q2, q2, r2, r3) ∈ IΣ1

[A].



An example, the class Σ1(<) (existential FO: ∃∗)

One can prove that IΣ1
[A] is the least subset of Q4 such that:

(1) If L(q, r) ∩ L(s, t) ̸= ∅, then (q, r, s, t) ∈ IΣ1
[A]

(2) If (q, r, s, t), (r, u, t, v) ∈ IΣ1
[A], then (q, u, s, v) ∈ IΣ1

[A]

(3) If q, r, s ∈ Q and L(r, s) ̸= ∅, then (q, q, r, s) ∈ IΣ1
[A]

Let us look at the example

q1 q2
a

a

Language L0

r1 r2 r3
b b

a, b

Language L1

• By (1), (q1, q2, r2, r2) ∈ IΣ1
[A] since a ∈ L(q1, q2) ∩ L(r1, r2).

• By (3), (q1, q1, r1, r2) ∈ IΣ1
[A] and (q2, q2, r2, r3) ∈ IΣ1

[A].

• By (2), it then follows that (q1, q2, r1, r3) ∈ IΣ1
[A].

Thus, L0 is not Σ1(<)-separable from L1.
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The difficulty of separation: a fixpoint concern

▶ Problem: the pattern seen for membership repeats itself. . .

Previous question: tied to a single fixed class D

Does D have decidable separation ?

New question: for an operator C 7→ Op(C) (family of classes)

Find hypotheses on C ensuring that Op(C) has decidable separation.

This is difficult.

▶ Least fixpoints often need more information than separation.

▶ ⇒ go beyond separation (e.g., covering and beyond).

Current results are restrict to very specific kinds of input classes.
(e.g. low levels in alternation hierarchies).



Thank you !

Separation and covering decidable Membership decidable

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<)


