Interpolation Properties for Array Theories: Positive and Negative Results

Silvio Ghilardi ${ }^{1}$
Dipartimento di Matematica
Università degli Studi di Milano, Italy

Workshop on Craig Interpolation and Beth Definability

Amsterdam, April 22, 2024

[^0]
Outline

(1) Interpolation Properties

(3) Arrays with Max Diff

Motivation

A first-order theory T has quantifier-free interpolation iff for every quantifier free formulae ϕ, ψ such that $T \vdash \phi \rightarrow \psi$, there exists a quantifier free formula θ such that:
(i) $T \vdash \phi \rightarrow \theta$;
(ii) $T \vdash \theta \rightarrow \psi$;
(iii) only variables occurring both in ψ and in ϕ occur in θ.

Quantifier-free interpolants are commonly used in formal verification during abstraction-refinement cycles (since [McMillan CAV 03], [McMillan TACAS 04], ...).

Motivation

- In infinite-state model checking, the search of formulae is not finitely bounded.

Motivation

- In infinite-state model checking, the search of formulae is not finitely bounded.
- Analyzing spurious error traces:

$$
\operatorname{In}\left(\underline{x}_{0}\right) \wedge \operatorname{Tr}\left(\underline{x}_{0}, \underline{x}_{1}\right) \wedge \cdots \wedge \operatorname{Tr}\left(\underline{x}_{n-1}, \underline{x}_{n}\right) \wedge U\left(\underline{x}_{n}\right)
$$

one can produce (via interpolation) formulae ϕ such that

$$
\operatorname{In}\left(\underline{x}_{0}\right) \wedge \bigwedge_{j=0}^{i} \operatorname{Tr}\left(\underline{x}_{j-1}, \underline{x}_{j}\right) \models \phi\left(\underline{x}_{i}\right) \text { and } \phi\left(\underline{x}_{i}\right) \wedge \bigwedge_{j=i+1}^{n} \operatorname{Tr}\left(\underline{x}_{j-1}, \underline{x}_{j}\right) \wedge U\left(\underline{x}_{n}\right) \models \perp .
$$

Motivation

- In infinite-state model checking, the search of formulae is not finitely bounded.
- Analyzing spurious error traces:

$$
\operatorname{In}\left(\underline{x}_{0}\right) \wedge \operatorname{Tr}\left(\underline{x}_{0}, \underline{x}_{1}\right) \wedge \cdots \wedge \operatorname{Tr}\left(\underline{x}_{n-1}, \underline{x}_{n}\right) \wedge U\left(\underline{x}_{n}\right)
$$

one can produce (via interpolation) formulae ϕ such that

$$
\operatorname{In}\left(\underline{x}_{0}\right) \wedge \bigwedge_{j=0}^{i} \operatorname{Tr}\left(\underline{x}_{j-1}, \underline{x}_{j}\right) \models \phi\left(\underline{x}_{i}\right) \text { and } \phi\left(\underline{x}_{i}\right) \wedge \bigwedge_{j=i+1}^{n} \operatorname{Tr}\left(\underline{x}_{j-1}, \underline{x}_{j}\right) \wedge U\left(\underline{x}_{n}\right) \models \perp .
$$

- These formulae (and the atoms they contain) can contribute to the refinement of the candidate loop invariant guaranteeing safety.

General Interpolation Property

In verification theory, people uses the following stronger property for a theory T :

General Interpolation Property

In verification theory, people uses the following stronger property for a theory T :

Definition

Let T be a theory in a signature Σ; we say that T has the general quantifier-free interpolation property iff for every signature Σ^{\prime} (disjoint from Σ) and for every ground $\Sigma \cup \Sigma^{\prime}$-formulæ ϕ, ψ such that $T \vdash \phi \rightarrow \psi$ is T-unsatisfiable, there is a ground formula θ such that:
(i) $T \vdash \phi \rightarrow \theta$;
(ii) $T \vdash \theta \rightarrow \psi$;
(iii) all predicate, constants and function symbols from Σ^{\prime} occurring in θ occur also in ϕ and in ψ.

Uniform Interpolation Property

A considerable strengthening of plain interpolation is uniform interpolation:

Uniform Interpolation Property

A considerable strengthening of plain interpolation is uniform interpolation:

Definition

We say that a theory T has uniform quantifier-free interpolation iff every tuple of variables \underline{x} and every quantifier-free formula ϕ there is a quantifier-free formula θ not containing the \underline{x} such that:
(i) $T \vdash \phi \rightarrow \theta$;
(ii) for every quantifier-free formula ψ not containing the \underline{x}

$$
T \vdash \phi \rightarrow \psi \quad \Rightarrow \quad T \vdash \theta \rightarrow \psi
$$

Semantic Reformulations

Theorem

Let T be a universal theory. Then
(i) T has quantifier-free interpolation iff T has the amalgamation property [B 75];
(ii) T has the general quantifier-free interpolation iff T has the strong amalgamation property [BGR 14];
(iii) T has the uniform interpolation property iff T has a model completion [M 95, CGGMR 20].

Amalgamation

Definition

A universal theory T has the amalgamation property iff whenever we are given models \mathcal{M}_{1} and \mathcal{M}_{2} of T and a common submodel \mathcal{A} of them, there exists a further model \mathcal{M} of T endowed with embeddings $\mu_{1}: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ and $\mu_{2}: \mathcal{M}_{2} \longrightarrow \mathcal{M}$ whose restrictions to $|\mathcal{A}|$ coincide. The amalgamation property is strong iff in addition we require that $\mu_{1}\left(a_{1}\right)=\mu_{2}\left(a_{2}\right)$ implies that $a_{1}=a_{2} \in \mathcal{A}$.

Equality Interpolating Property

Definition

A theory T is equality interpolating [YM 05, BGR 14] iff it has the quantifier-free interpolation property and satisfies the following condition:

- for every quintuple $\underline{x}, \underline{y}_{1}, \underline{z}_{1}, \underline{y}_{2}, \underline{z}_{2}$ of tuples of variables and pair of quantifier-free formulae $\delta_{1}\left(\underline{x}, \underline{z}_{1}, \underline{y}_{1}\right)$ and $\delta_{2}\left(\underline{x}, \underline{z}_{2}, \underline{y}_{2}\right)$ such that

$$
\begin{equation*}
\delta_{1}\left(\underline{x}, \underline{z}_{1}, \underline{y}_{1}\right) \wedge \delta_{2}\left(\underline{x}, \underline{z}_{2}, \underline{y}_{2}\right) \vdash_{T} \underline{y}_{1} \cap \underline{y}_{2} \neq \emptyset \tag{1}
\end{equation*}
$$

there exists a tuple $\underline{v}(\underline{x})$ of terms (called interpolating terms) such that

$$
\begin{equation*}
\delta_{1}\left(\underline{x}, \underline{z}_{1}, \underline{y}_{1}\right) \wedge \delta_{2}\left(\underline{x}, \underline{z}_{2}, \underline{y}_{2}\right) \vdash_{T}\left(\underline{y}_{1} \cup \underline{y}_{2}\right) \cap \underline{v} \neq \emptyset . \tag{2}
\end{equation*}
$$

Equality Interpolating Property

Theorem (BGR 14)

A universal theory T has the strong amalgamation property (i.e. the general interpolation property) iff it is equality interpolating. Equality interpolating is a modular property (under signature disjointness and stably-infiniteness assumptions).

Recall that T is stably infinite iff every model of T embeds into an infinite model (this is equivalent, via compactness, to the standard definition).

Equality Interpolating Property

Interpolating terms play an essential role in combined interpolation algorithms (see below).

Example

$\mathcal{E U F}$ is equality interpolating: interpolating terms can be computed by ground Knuth-Bendix completion (giving higher precedence to symbols to be eliminated).

Example

Universal Theories with QE (like linear real/integer arithmetics, under careful choice of the language) are equality interpolating: interpolating terms come from 'testing points' lemmas.

Equality Interpolating Property

Theorem (BGR 14)

Let T be a universal theory admitting quantifier-free interpolation and Σ be a signature disjoint from the signature of T containing at least a unary predicate symbol. Then, $T \cup E U F(\Sigma)$ has quantifier-free interpolation iff T has the strong amalgamation property.

Equality Interpolating Property

Theorem (BGR 14)

Let T be a universal theory admitting quantifier-free interpolation and Σ be a signature disjoint from the signature of T containing at least a unary predicate symbol. Then, $T \cup E U F(\Sigma)$ has quantifier-free interpolation iff T has the strong amalgamation property.

Here you are the relevant modularity result:

Equality Interpolating Property

Theorem (BGR 14)

Let T be a universal theory admitting quantifier-free interpolation and Σ be a signature disjoint from the signature of T containing at least a unary predicate symbol. Then, $T \cup E U F(\Sigma)$ has quantifier-free interpolation iff T has the strong amalgamation property.

Here you are the relevant modularity result:

Theorem (BGR 14)

Let T_{1} and T_{2} be two universal, stably infinite theories over disjoint signatures Σ_{1} and Σ_{2}. If both T_{1} and T_{2} have the strong amalgamation property, then so does $T_{1} \cup T_{2}$. In particular, $T_{1} \cup T_{2}$ admits quantifier-free interpolation.

Equality Interpolating Property

Equality interpolating plays a role also for combined uniform interpolation, but only in presence of convexity:

Equality Interpolating Property

Equality interpolating plays a role also for combined uniform interpolation, but only in presence of convexity:

Theorem (CGGMR IJCAR '12)

Let T_{1} and T_{2} be two universal, stably infinite, strongly amalgamating convex theories over disjoint signatures Σ_{1} and Σ_{2}. If both T_{1} and T_{2} have uniform interpolation, then so does $T_{1} \cup T_{2}$.

Equality Interpolating Property

Equality interpolating plays a role also for combined uniform interpolation, but only in presence of convexity:

Theorem (CGGMR IJCAR '12)

Let T_{1} and T_{2} be two universal, stably infinite, strongly amalgamating convex theories over disjoint signatures Σ_{1} and Σ_{2}. If both T_{1} and T_{2} have uniform interpolation, then so does $T_{1} \cup T_{2}$.

Recall that a theory T is said to be convex iff every finite set of literals entailing (modulo T) a disjunction of $n>0$ equalities entails one of them.

Outline

(1) Interpolation Properties
(2) Arrays and diff
(3) Arrays with Max Diff

The theory $\mathcal{A R}_{\text {ext }}$ of arrays with extensionality

This is an important theory in verification:

- we have three sorts INDEX, ELEM, ARRAY;

The theory $\mathcal{A R}_{\text {ext }}$ of arrays with extensionality

This is an important theory in verification:

- we have three sorts INDEX, ELEM, ARRAY;
- besides equality, we have function symbols

$r d:$ ARRAY \times INDEX \longrightarrow ELEM, $w r: A R R A Y \times I N D E X \times$ ELEM \longrightarrow ARRAY

The theory $\mathcal{A R}_{\text {ext }}$ of arrays with extensionality

This is an important theory in verification:

- we have three sorts INDEX, ELEM, ARRAY;
- besides equality, we have function symbols

```
rd:ARRAY }\times\mathrm{ INDEX }\longrightarrow\mathrm{ ELEM,
wr:ARRAY }\times\mathrm{ INDEX }\times\mathrm{ ELEM }\longrightarrow\mathrm{ ARRAY
```

- as axioms, we have

$$
\begin{align*}
\forall y, i, e . & r d(w r(y, i, e), i)=e \tag{3}\\
\forall y, i, j, e . & i \neq j \rightarrow r d(w r(y, i, e), j)=r d(y, j) \tag{4}\\
\forall x, y . & x \neq y \rightarrow(\exists i . r d(x, i) \neq r d(y, i)) \tag{5}
\end{align*}
$$

The theory $\mathcal{A R}_{\text {ext }}$ of arrays with extensionality

Unfortunately, $\mathcal{A R}_{\text {ext }}$ does not have interpolation, witness the following well-known counterexample (due to Ranjit Jhala).

The theory $\mathcal{A R}_{\text {ext }}$ of arrays with extensionality

Unfortunately, $\mathcal{A R}_{\text {ext }}$ does not have interpolation, witness the following well-known counterexample (due to Ranjit Jhala).

$$
\begin{aligned}
& A:=\quad\{a=w r(b, i, e)\} \\
& B:=\quad\left\{r d\left(a, j_{1}\right) \neq r d\left(b, j_{1}\right), r d\left(a, j_{2}\right) \neq r d\left(b, j_{2}\right), j_{1} \neq j_{2}\right\}
\end{aligned}
$$

The theory $\mathcal{A R}_{\text {ext }}$ of arrays with extensionality

Unfortunately, $\mathcal{A R}_{\text {ext }}$ does not have interpolation, witness the following well-known counterexample (due to Ranjit Jhala).

$$
\begin{aligned}
& A:=\quad\{a=w r(b, i, e)\} \\
& B:=\quad\left\{r d\left(a, j_{1}\right) \neq r d\left(b, j_{1}\right), r d\left(a, j_{2}\right) \neq r d\left(b, j_{2}\right), j_{1} \neq j_{2}\right\}
\end{aligned}
$$

Take ψ, ϕ to be the conjunctions of the literals from A, B, respectively. Then $\psi \wedge \phi$ is $\mathcal{A R}_{\text {ext }}$-unsatisfiable, but no quantifier-free interpolant exists (notice that it should mention only a, b).

The theory $\mathcal{A} \mathcal{X}_{\text {diff }}$ of arrays with diff

Since $\mathcal{A R}_{\text {ext }}$ does not have quantifier-free interpolants, we consider the following variant, which we call $\mathcal{A} \mathcal{X}_{\text {diff }}$. We add a further symbol in the signature

$$
\text { diff }: \text { ARRAY } \times \text { ARRAY } \longrightarrow \text { INDEX }
$$

The theory $\mathcal{A} \mathcal{X}_{\text {diff }}$ of arrays with diff

Since $\mathcal{A R}_{\text {ext }}$ does not have quantifier-free interpolants, we consider the following variant, which we call $\mathcal{A X}_{\text {diff }}$. We add a further symbol in the signature

$$
\text { diff }: \text { ARRAY } \times \text { ARRAY } \longrightarrow \text { INDEX }
$$

We replace the extensionality axiom (9) by its skolemization

$$
\forall x, y . \quad x \neq y \rightarrow r d(x, \operatorname{diff}(x, y)) \neq r d(y, \operatorname{diff}(x, y))
$$

The theory $\mathcal{A} \mathcal{X}_{\text {diff }}$ of arrays with diff

Since $\mathcal{A R}_{\text {ext }}$ does not have quantifier-free interpolants, we consider the following variant, which we call $\mathcal{A X}_{\text {diff }}$. We add a further symbol in the signature

$$
\text { diff }: \text { ARRAY } \times \text { ARRAY } \longrightarrow \text { INDEX }
$$

We replace the extensionality axiom (9) by its skolemization

$$
\forall x, y . \quad x \neq y \rightarrow r d(x, \operatorname{diff}(x, y)) \neq r d(y, \operatorname{diff}(x, y))
$$

Theorem

The (universal) theory $\mathcal{A X}_{\text {diff }}$ has quantifier-free interpolation.

Arrays with diff: amalgamation

The above theorem can be proved in various independent ways:

- semantically [BGT 12]: by showing amalgamation property;
- syntactically [BGT 12]: by rewriting techniques, via a specific adaptation of Knuth-Bendix completion (called 'Gaussian completion');
- syntactically [TW 16]: by hierarchical reduction to $\mathcal{E U \mathcal { F }}$ (this is the best method from the complexity viewpoint).

Arrays with diff: strong amalgamation

We can strenghten the above result

Arrays with diff: strong amalgamation

We can strenghten the above result

Theorem
The (universal) theory $\mathcal{A} \mathcal{X}_{\text {diff }}$ has general quantifier-free interpolation.

Arrays with diff: strong amalgamation

Again this theorem can be proved:

- semantically [BGT 12]: by showing strong amalgamation property;
- syntactically [implicit in BGT 12]: by rewriting techniques.

Arrays with diff: strong amalgamation

Again this theorem can be proved:

- semantically [BGT 12]: by showing strong amalgamation property;
- syntactically [implicit in BGT 12]: by rewriting techniques.

The reason why rewriting techniques work is because they allow to compute equality interpolating terms in the following way.

Arrays with diff: strong amalgamation

Again this theorem can be proved:

- semantically [BGT 12]: by showing strong amalgamation property;
- syntactically [implicit in BGT 12]: by rewriting techniques.

The reason why rewriting techniques work is because they allow to compute equality interpolating terms in the following way.

The completion of a pair of constraints $\delta(\underline{x}, \underline{y}) \wedge \theta(\underline{x}, \underline{z})$ produces a finite disjunction $\bigvee_{i}\left(\delta_{i}(\underline{x}, \underline{y}) \wedge \theta_{i}(\underline{x}, \underline{z})\right)$ of constraints without mixed terms. So whenever a disjunction of equalities is entailed, each disjunct entails a single equality whose normal form is an equality of the kind $t=t$, with shared t. Such t 's are the equality interpolating terms.

Arrays with diff: uniform interpolation?

Theorem
The (universal) theory $\mathcal{A} \mathcal{X}_{\text {diff }}$ does not have uniform quantifier-free interpolation.

Arrays with diff: uniform interpolation?

Theorem

The (universal) theory $\mathcal{A} \mathcal{X}_{\text {diff }}$ does not have uniform quantifier-free interpolation.

A counterexample is the formula

$$
\begin{equation*}
r d\left(c_{1}, i\right) \neq r d\left(c_{2}, i\right) \wedge r d\left(d_{1}, i\right)=r d\left(d_{2}, i\right) \tag{6}
\end{equation*}
$$

An argument based on ultraproducts show that we cannot eliminate uniformly the index variable i from it.

Arrays with diff: uniform interpolation?

This is the schema of the argument. A uniform interpolant (supposing it exists) is a formula $U I\left(c_{1}, c_{2}, d_{1}, d_{2}\right)$ implied by (6) and having the property that it implies all formulas - not containing i - implied by (6). Consider the infinitely many formulae

$$
\phi_{n} \equiv c_{1} \sim_{n} c_{2} \rightarrow \bigvee_{j=1}^{n} r d\left(d_{1}, \operatorname{diff}_{n}\left(c_{1}, c_{2}\right)\right)=r d\left(d_{2}, \operatorname{diff}_{n}\left(c_{1}, c_{2}\right)\right)
$$

where $c_{1} \sim_{n} c_{2}$ says that c_{1} and c_{2} differ in at most n indices and diff_{n} is the iterated diff operator (both such constructs are quantifier-free definable in $\left.\mathcal{A} \mathcal{X}_{\text {diff }}\right)$.

Arrays with diff: uniform interpolation?

One now builds models M_{n} such that $M_{n} \not \models \phi_{n}$. Hence $M_{n} \models \neg U I$.

Arrays with diff: uniform interpolation?

One now builds models M_{n} such that $M_{n} \not \models \phi_{n}$. Hence $M_{n} \models \neg U I$.
Taking an untraproduct $\Pi_{D} M_{n}$ modulo a non principal ultrafilter, by Łos theorem, we get $\Pi_{D} M_{n} \models \neg U I$.

Arrays with diff: uniform interpolation?

One now builds models M_{n} such that $M_{n} \not \vDash \phi_{n}$. Hence $M_{n} \models \neg U I$.
Taking an untraproduct $\Pi_{D} M_{n}$ modulo a non principal ultrafilter, by Łos theorem, we get $\Pi_{D} M_{n} \models \neg U I$.

However, since it is possible to build an extension $N \supseteq \Pi_{D} M_{n}$ satisfying (6), we get $N \models U I$ (because (6) implies $U I$) and also $\Pi_{D} M_{n} \models U I$, because $U I$ is quantifier-free and hence preserved by substructures. Contradiction.

Outline

(1) Interpolation Properties
(2) Arrays and diff
(3) Arrays with Max Diff

A more expressive theory

- Plain diff operation is semantically undetermined, we want to replace it with a more informative operation.

A more expressive theory

- Plain diff operation is semantically undetermined, we want to replace it with a more informative operation.
- To this aim we introduce [GGKN 23] the Theory of Arrays with MaxDiff, where MaxDiff returns the biggest index where two arrays differ (it returns the conventional value 0 is they are equal).

A more expressive theory

- Plain diff operation is semantically undetermined, we want to replace it with a more informative operation.
- To this aim we introduce [GGKN 23] the Theory of Arrays with MaxDiff, where MaxDiff returns the biggest index where two arrays differ (it returns the conventional value 0 is they are equal).
- This theory is parameterized on different 'index theories'; the typical index theory is Presburger arithmetic (with 'division by n ' for all n in the language).

A more expressive theory

- Plain diff operation is semantically undetermined, we want to replace it with a more informative operation.
- To this aim we introduce [GGKN 23] the Theory of Arrays with MaxDiff, where MaxDiff returns the biggest index where two arrays differ (it returns the conventional value 0 is they are equal).
- This theory is parameterized on different 'index theories'; the typical index theory is Presburger arithmetic (with 'division by n ' for all n in the language).
- The theory has also a length operation $|-|$: now an array a has the undefined value ' \perp ' outside the interval $[0,|a|]$.

A more expressive theory

- Plain diff operation is semantically undetermined, we want to replace it with a more informative operation.
- To this aim we introduce [GGKN 23] the Theory of Arrays with MaxDiff, where MaxDiff returns the biggest index where two arrays differ (it returns the conventional value 0 is they are equal).
- This theory is parameterized on different 'index theories'; the typical index theory is Presburger arithmetic (with 'division by n ' for all n in the language).
- The theory has also a length operation $|-|$: now an array a has the undefined value ' \perp ' outside the interval $[0,|a|]$.
- There is a remarkable gain in expressiveness, we show that interpolation properties can be maintained.

Index Theory

To locate our contribution, we need the notion of index theory.

Definition

An index theory T_{I} is a mono-sorted theory (let INDEX be its sort) satisfying the following conditions:

- T_{I} is universal, stably infinite and has the general quantifier-free interpolation property;
- T_{I} has decidable quantifier-free fragment;
- T_{I} extends the theory $T O$ of linear orderings with a distinguished element 0 .

Index Theory

To locate our contribution, we need the notion of index theory.

Definition

An index theory T_{I} is a mono-sorted theory (let INDEX be its sort) satisfying the following conditions:

- T_{I} is universal, stably infinite and has the general quantifier-free interpolation property;
- T_{I} has decidable quantifier-free fragment;
- T_{I} extends the theory $T O$ of linear orderings with a distinguished element 0 .

Examples of index theories T_{I} are $T O$ itself, integer difference logic integer linear arithmetic, and real linear arithmetics.

$\mathcal{A R} \mathcal{D}\left(T_{I}\right)$: the Theory of Arrays with MaxDiff

Axioms: the axioms of T_{I}, and

$$
\begin{gather*}
\forall y, i, e,|w r(y, i, e)|=|y| \tag{7}\\
\forall y, i, \operatorname{wr}(y, i, \perp)=y \tag{8}\\
\forall y, i, e,(e \neq \perp \wedge 0 \leq i \leq|y|) \rightarrow r d(w r(y, i, e), i)=e \tag{9}\\
\forall y, i, j, e, i \neq j \rightarrow r d(w r(y, i, e), j)=r d(y, j) \tag{10}\\
\forall y, i, r d(y, i) \neq \perp \leftrightarrow 0 \leq i \leq|y| \tag{11}\\
\forall y,|y| \geq 0 \tag{12}\\
\forall y, \operatorname{diff}(y, y)=0 \tag{13}\\
\forall x, y, x \neq y \rightarrow r d(x, \operatorname{diff}(x, y)) \neq r d(y, \operatorname{diff}(x, y)) . \tag{14}\\
\forall x, y, i, \operatorname{diff}(x, y)<i \rightarrow r d(x, i)=r d(y, i) . \tag{15}\\
\perp \neq e l .
\end{gather*}
$$

$\mathcal{A R} \mathcal{D}\left(T_{I}\right)$: the Theory of Arrays with MaxDiff

The quantifier-free fragment of theis theory is decidable, because it can be embedded into Bradley's 'array property fragment'.

$\mathcal{A R D}\left(T_{I}\right)$: the Theory of Arrays with MaxDiff

The quantifier-free fragment of theis theory is decidable, because it can be embedded into Bradley's 'array property fragment'. In fact atoms of the kind

$$
\begin{equation*}
a=b, \quad|a|=k, \quad \operatorname{diff}(a, b)=j, \quad w r(a, i, e)=b \tag{17}
\end{equation*}
$$

can be translated into universal formulae of $T_{I} \cup \mathcal{E U \mathcal { F }}$ in Bradley's fragment (we call such formulae their B-translations).

$\mathcal{A R} \mathcal{D}\left(T_{I}\right)$: the Theory of Arrays with MaxDiff

Theorem
The (universal) theory $\mathcal{A R D}\left(T_{I}\right)$ has quantifier-free interpolation.
The theorem can be proved [GGKN 23]:

$\mathcal{A R} \mathcal{D}\left(T_{I}\right)$: the Theory of Arrays with MaxDiff

Theorem
The (universal) theory $\mathcal{A R D}\left(T_{I}\right)$ has quantifier-free interpolation.
The theorem can be proved [GGKN 23]:

- semantically: by showing amalgamation property;

$\mathcal{A R} \mathcal{D}\left(T_{I}\right)$: the Theory of Arrays with MaxDiff

Theorem
The (universal) theory $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$ has quantifier-free interpolation.
The theorem can be proved [GGKN 23]:

- semantically: by showing amalgamation property;
- syntactically: by hierarchical reduction to $T_{I} \cup \mathcal{E U F}$.

$\mathcal{A R} \mathcal{D}\left(T_{I}\right)$: the Theory of Arrays with MaxDiff

Theorem

The (universal) theory $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$ has quantifier-free interpolation.
The theorem can be proved [GGKN 23]:

- semantically: by showing amalgamation property;
- syntactically: by hierarchical reduction to $T_{I} \cup \mathcal{E U F}$.

In both cases, the proof follows the same schema as in the case of in the case of $\mathcal{A} \mathcal{X}_{\text {diff }}$, but details are much more challenging. We give some qualitative account of the second proof.

Interpolation for $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$

- Our problem: given two qf formulae A and B s.t. $A \wedge B$ is not satisfiable (modulo $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$), to compute a qf formula C s.t. $\mathcal{A R D}\left(T_{I}\right) \models A \rightarrow C, \mathcal{A R \mathcal { D }}\left(T_{I}\right) \models C \wedge B \rightarrow \perp$ and s.t. C contains only the free constants (called common constants) occurring both in A and in B.

Interpolation for $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$

- Our problem: given two qf formulae A and B s.t. $A \wedge B$ is not satisfiable (modulo $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$), to compute a qf formula C s.t. $\mathcal{A R D}\left(T_{I}\right) \models A \rightarrow C, \mathcal{A R D}\left(T_{I}\right) \models C \wedge B \rightarrow \perp$ and s.t. C contains only the free constants (called common constants) occurring both in A and in B.
- There are infinitely many common terms out of finitely many common constants: iterated diff operations diff_{k} are needed in our algorithm to discover 'implicit' common facts.

Interpolation for $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$

- Our problem: given two qf formulae A and B s.t. $A \wedge B$ is not satisfiable (modulo $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$), to compute a qf formula C s.t. $\mathcal{A R D}\left(T_{I}\right) \models A \rightarrow C, \mathcal{A R D}\left(T_{I}\right) \models C \wedge B \rightarrow \perp$ and s.t. C contains only the free constants (called common constants) occurring both in A and in B.
- There are infinitely many common terms out of finitely many common constants: iterated diff operations diff_{k} are needed in our algorithm to discover 'implicit' common facts.
- E.g., diff_{2} returns the last-but-one index where a, b differ (0 if a, b differ in at most one index), diff_{3} the last-but-two index etc.

Interpolation for $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$

- Our problem: given two qf formulae A and B s.t. $A \wedge B$ is not satisfiable (modulo $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$), to compute a qf formula C s.t. $\mathcal{A R D}\left(T_{I}\right) \models A \rightarrow C, \mathcal{A R D}\left(T_{I}\right) \models C \wedge B \rightarrow \perp$ and s.t. C contains only the free constants (called common constants) occurring both in A and in B.
- There are infinitely many common terms out of finitely many common constants: iterated diff operations diff_{k} are needed in our algorithm to discover 'implicit' common facts.
- E.g., diff_{2} returns the last-but-one index where a, b differ (0 if a, b differ in at most one index), diff_{3} the last-but-two index etc.
- Those iterated operators are definable in our language.

Interpolation for $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$

Step 0. Write both A and B in the form $\Phi_{1} \wedge \Phi_{2}$, where Φ_{2} is a pure $T_{I} \cup \mathcal{E U F}$-formula and Φ_{1} is a conjunction of atoms of the form (17); add also missing atoms of the kind $|d|=k_{d}$ to both A and B (extra free constants are employed here).

Step 1. Let N be equal to the number of index constants occurring in A, B (plus one); for every pair of common ARRAY-constants c_{1}, c_{2}, pick fresh INDEX constants k_{1}, \ldots, k_{N} and add the atoms $\operatorname{diff}_{n}\left(c_{1}, c_{2}\right)=k_{n}$ (for all $n=1, \ldots, N$) to both A and B.

Step 2. B-instantiate formulae (17) with index constants (both inside A and inside B).

Step 3. Now (this is the delicate fact to be proved) the $T_{I} \cup \mathcal{E} \mathcal{U} \mathcal{F}$-part of $A \cup B$ become inconsistent. Since T_{I} has general quantifier-free interpolation, we can compute the related interpolant. To get our desired $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$-interpolant, we only have to replace back in it the fresh constants introduced in Step 1 by the common terms they name.

General Interpolation for $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$?

Strong amalgamation however fails [GGKN 23]:

Theorem

The (universal) theory $\mathcal{A R} \mathcal{D}\left(T_{I}\right)$ does not have general quantifier-free interpolation.

In fact, this is a counterexample to general interpolation:

$$
\begin{array}{ll}
(A) & |a|=0 \wedge r d(a, 0)=e \wedge P(a) \\
(B) &
\end{array}|b|=0 \wedge r d(b, 0)=e \wedge \neg P(b) .
$$

General Interpolation

To restore superamalgamation, one needs a use of constant arrays. We add a unary function Const : INDEX \rightarrow ARRAY, constrained by the following axioms:

$$
\begin{gather*}
\forall i,|\operatorname{Const}(i)|=\max (i, 0) \tag{18}\\
\forall i, j, \quad(0 \leq j \wedge j \leq \mid \text { Const }(i) \mid \rightarrow r d(\text { Const }(i), j)=e l) \tag{19}
\end{gather*}
$$

Thus Const (i) is the constant array of length i and value the distinguished element el (the atom $P(w r$ (Const $(0), 0, e))$ works now as interpolant in the above counterexample).

General Interpolation

General interpolation for this theory has been proved in [GGKN 23] only semantically (via strong amalgamation).

We conjecture hierarchical reduction works too, but it is not clear whether the reduction to $T_{I} \cup \mathcal{E U \mathcal { F }}$ can be kept to be polynomial.

Conclusions

As we saw, it is possible to design array theories which are significantly expressive, while still enjoying quantifier-free and general quantifier-free interpolation properties.

Conclusions

As we saw, it is possible to design array theories which are significantly expressive, while still enjoying quantifier-free and general quantifier-free interpolation properties.

This is remarkable, because array theories are not decidable at the elementary level (only a limited use of quantifiers can guarantee decidability).

Conclusions

As we saw, it is possible to design array theories which are significantly expressive, while still enjoying quantifier-free and general quantifier-free interpolation properties.

This is remarkable, because array theories are not decidable at the elementary level (only a limited use of quantifiers can guarantee decidability).

Further enrichments still need to be adequately investigated.

[^0]: ${ }^{1}$ Based on joint work with various (recent and less recent) collaborators: R. Bruttomesso, S. Ranise, A. Gianola, D. Calvanese, M. Montali, D. Kapur, C. Naso

