On the Completeness of Interpolation Procedures

Raheleh Jalali
(joint work with Stefan Hetzl)

Institute of Computer Science, The Czech Academy of Sciences
CIBD
23 April, 2024

Outline

(1) Motivation

(2) Incompleteness results

(3) Completeness of Maehara algorithm for LK ${ }^{\text {at }}$

4 Completeness up to pruning and subsumption

Motivation

Aim: Gauging the expressive power of interpolation algorithms.

Question

Which interpolants can be obtained from an interpolation algorithm?
Motivated by this question, we initiate the study of the completeness properties of interpolation algorithms.

Motivation

Aim: Gauging the expressive power of interpolation algorithms.

Question

Which interpolants can be obtained from an interpolation algorithm?
Motivated by this question, we initiate the study of the completeness properties of interpolation algorithms.

Definition

Fix a calculus and an interpolation algorithm \mathcal{I}. We say \mathcal{I} is complete if, for every semantically possible interpolant C of an implication $A \rightarrow B$, there is a proof P of $A \rightarrow B$ such that C is logically equivalent to $\mathcal{I}(P)$.

Completeness of interpolation algorithms

Overview

The practical relevance of a completeness result is that it provides a guarantee that, at least in principle, the algorithm allows us to find the "good" interpolants, whatever that may mean in the concrete application under consideration.

Results: We establish incompleteness and different kinds of completeness results for several standard algorithms for resolution and the sequent calculus for propositional, modal, and first-order logic.

Getting ready

- Propositional language $\mathcal{L}_{p}=\{\perp, \wedge, \vee, \neg\}$. Define $A \rightarrow B:=\neg A \vee B$ and $T:=\perp \rightarrow \perp$.
- A literal ℓ is either an atom or a negation of an atom.
- A clause C is a finite disjunction of literals $C=\ell_{1} \vee \cdots \vee \ell_{n}$, also written as $C=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$.
- By a clause set we mean a set $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ of clauses $C_{i}=\left\{\ell_{i 1}, \ldots, \ell_{i k_{i}}\right\}$ and the formula interpretation of \mathcal{C} is $\bigwedge_{i=1}^{n} \bigvee_{j=1}^{k_{i}} \ell_{i j}$.
- A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals.
- For a formula A, the set of its variables is denoted by $V(A)$.

Definition

A logic L has the Craig Interpolation Property (CIP) if for any formulas A and B if $A \rightarrow B \in L$ then there exists a formula C such that $V(C) \subseteq V(A) \cap V(B)$ and $A \rightarrow C \in L$ and $C \rightarrow B \in L$.

Resolution R

Propositional resolution, R, is one of the weakest proof systems.
Resolution operates on clauses.
A resolution proof, also called a resolution refutation, shows the unsatisfiability of a set of initial clauses by starting with these clauses and deriving new clauses by the resolution rule

$$
\frac{C \cup\{p\} \quad D \cup\{\neg p\}}{C \cup D}
$$

until the empty clause \perp is derived, where C and D are clauses. We can interpret resolution as a refutation system: instead of proving a formula A is true we prove that $\neg A$ is unsatisfiable.
Resolution with weakening: Add the weakening rule to the R :

$$
\frac{C}{C \cup D}
$$

for arbitrary clauses C and D.

Interpolation algorithm for R

Given: P, a resolution proof of \perp from the clauses $A_{i}(\bar{p}, \bar{q})$ and $B_{j}(\bar{p}, \bar{r})$, where $i \in I, j \in J$, and $\bar{p}, \bar{q}, \bar{r}$ are disjoint sets of atoms.

Define a ternary connective sel as
$\operatorname{sel}(A, x, y)=(\neg A \rightarrow x) \wedge(A \rightarrow y)=(A \vee x) \wedge(\neg A \vee y)$.

Example

$$
\begin{aligned}
& \operatorname{sel}(\perp, x, y)=x, \operatorname{sel}(\top, x, y)=y, \operatorname{sel}(A, \perp, \top)=A, \text { and } \\
& \operatorname{sel}(A, \top, \perp)=\neg A .
\end{aligned}
$$

Interpolation algorithm: Assign \perp to clauses A_{i} for each $i \in I$ and assign \top to clauses B_{j} for $j \in J$. Then:

Interpolation algorithm for R

For the resolution rule is of the following form for $p_{k} \in \bar{p}$ define

$$
\frac{\Gamma, p_{k} \frac{\Delta, \neg p_{k}}{\Gamma, \Delta} \stackrel{\text { int }}{\sim} \frac{x}{\operatorname{sel}\left(p_{k}, x, y\right)} . y}{}
$$

or when $q_{k} \in \bar{q}$

$$
\frac{\Gamma, q_{k} \Delta, \neg q_{k}}{\Gamma, \Delta} \stackrel{\text { int }}{\sim} \frac{x \quad y}{x \vee y}
$$

or when $r_{k} \in \bar{r}$

$$
\frac{\Gamma, r_{k} \Delta, \neg r_{k}}{\Gamma, \Delta} \stackrel{\text { int }}{\sim} \frac{x y}{x \wedge y}
$$

Interpolation algorithm for R

For the resolution rule is of the following form for $p_{k} \in \bar{p}$ define

$$
\frac{\Gamma, p_{k} \frac{\Delta, \neg p_{k}}{\Gamma, \Delta} \stackrel{\text { int }}{\sim} \frac{x}{\operatorname{sel}\left(p_{k}, x, y\right)} . y}{}
$$

or when $q_{k} \in \bar{q}$

$$
\frac{\Gamma, q_{k} \quad \Delta, \neg q_{k}}{\Gamma, \Delta} \stackrel{\text { int }}{\sim} \frac{x \quad y}{x \vee y}
$$

or when $r_{k} \in \bar{r}$

$$
\frac{\Gamma, r_{k} \Delta, \neg r_{k}}{\Gamma, \Delta} \stackrel{\text { int }}{\sim} \frac{x y}{x \wedge y}
$$

Theorem (Krajíček,Pudlák)

Let π be a resolution refutation of the set of clauses $\left\{A_{i}(\bar{p}, \bar{q}) \mid i \in I\right\}$ and $\left\{B_{j}(\bar{p}, \bar{q}) \mid j \in J\right\}$. Then, the interpolation algorithm outputs an interpolant for the valid formula $\bigwedge_{i \in I} A_{i}(\bar{p}, \bar{q}) \rightarrow \bigvee_{j \in J} \neg B_{j}(\bar{p}, \bar{q})$.

Example

Example

Consider the unsatisfiable sets of clauses:
$A_{1}=\{p, \neg q\}, A_{2}=\{q\}, B_{1}=\{\neg p, r\}, B_{2}=\{\neg r\}$

The algorithm outputs p. The unsatisfiable formula that we started with was $F=A_{1} \wedge A_{2} \wedge B_{1} \wedge B_{2}=(p \vee \neg q) \wedge q \wedge(\neg p \vee r) \wedge \neg r$. Thus, $\neg F=(p \wedge q) \rightarrow(p \vee r)$, which is $\left(A_{1} \wedge A_{2}\right) \rightarrow\left(\neg B_{1} \vee \neg B_{2}\right)$ is valid and p is its interpolant.

Sequent calculus LK

Γ, Δ : multisets of formulas. Interpretation of sequent $\Gamma \Rightarrow \Delta: \wedge \Gamma \rightarrow \bigvee \Delta$.

$$
\begin{gathered}
p \Rightarrow p \quad(\mathrm{Ax}) \\
\frac{\Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta}(L w) \\
\frac{A, A, \Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta}(L c) \\
\frac{A, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta}\left(L \wedge_{1}\right) \\
\frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B}(R \wedge) \\
\frac{\Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \vee B}\left(R \vee_{2}\right) \\
\frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta}(L \neg) \\
\frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}(c u t)
\end{gathered}
$$

The cut rule is called atomic when the cut formula is an atom or \perp or T.
Denote LK with only atomic cuts by $\mathbf{L K}^{\text {at }}$, denote $\mathbf{L K}$ with cuts only on literals by $\mathbf{L K}^{\text {lit }}$, and denote cut-free $\mathbf{L K}$ by $\mathbf{L K}^{-}$.

The cut rule is called atomic when the cut formula is an atom or \perp or T.
Denote LK with only atomic cuts by $\mathbf{L K}^{\text {at }}$, denote $\mathbf{L K}$ with cuts only on literals by $\mathbf{L K}^{\text {lit }}$, and denote cut-free $\mathbf{L K}$ by $\mathbf{L K}^{-}$.

Split sequent: $\Gamma_{1} ; \Gamma_{2} \Rightarrow \Delta_{1} ; \Delta_{2}$ such that $\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}$ is a sequent. Let π be a proof of $\Gamma_{1} ; \Gamma_{2} \Rightarrow \Delta_{1} ; \Delta_{2}$ in $\mathbf{L K}^{\text {at }}$. Define the Maehara interpolant $\mathcal{M}(\pi)=C$, recursively s.t.

$$
\mathbf{L K}^{\text {at }} \vdash \Gamma_{1} \Rightarrow \Delta_{1}, C \quad \text { and } \quad \mathbf{L K}^{\text {at }} \vdash C, \Gamma_{2} \Rightarrow \Delta_{2}
$$

and $V(C) \subseteq V\left(\Gamma_{1} \cup \Delta_{1}\right) \cap V\left(\Gamma_{2} \cup \Delta_{2}\right)$. Denote $\Gamma_{1} ; \Gamma_{2} \xrightarrow{C} \Delta_{1} ; \Delta_{2}$.

Maehara interpolation algorithm \mathcal{M}

- If π is an axiom: $p ; \stackrel{\perp}{\Longrightarrow} p ; \quad ; p \xrightarrow{\top} ; p \quad \perp ; \xlongequal{\perp}$;

$$
p ; \xlongequal{p} ; p \quad ; p \xrightarrow{\neg p} p ; \quad ; \perp \xrightarrow{\top} ;
$$

- If the last rule applied in π is one of the one-premise rules, then the interpolant of the premise works as the interpolant for the conclusion.
- If the last rule in π is $(R \wedge)$, then:

$$
\frac{\Gamma_{1} ; \Gamma_{2} \xlongequal{C} \Delta_{1}, A ; \Delta_{2} \quad \Gamma_{1} ; \Gamma_{2} \xlongequal{D} \Delta_{1}, B ; \Delta_{2}}{\Gamma_{1} ; \Gamma_{2} \xrightarrow{C \vee D} \Delta_{1}, A \wedge B ; \Delta_{2}}
$$

or

$$
\frac{\Gamma_{1} ; \Gamma_{2} \xlongequal{C} \Delta_{1} ; A, \Delta_{2} \quad \Gamma_{1} ; \Gamma_{2} \xlongequal{D} \Delta_{1} ; B, \Delta_{2}}{\Gamma_{1} ; \Gamma_{2} \xrightarrow{C \cap D} \Delta_{1} ; A \wedge B, \Delta_{2}}
$$

Maehara interpolation algorithm \mathcal{M}, cont.

- If the last rule in π is $(L \vee)$, then:

$$
\frac{\Gamma_{1}, A ; \Gamma_{2} \xlongequal{C} \Delta_{1} ; \Delta_{2} \quad \Gamma_{1}, B ; \Gamma_{2} \xlongequal{D} \Delta_{1} ; \Delta_{2}}{\Gamma_{1}, A \vee B ; \Gamma_{2} \xrightarrow{C \vee D} \Delta_{1} ; \Delta_{2}}
$$

or

$$
\frac{\Gamma_{1} ; A, \Gamma_{2} \xlongequal{C} \Delta_{1} ; \Delta_{2} \quad \Gamma_{1} ; B, \Gamma_{2} \xlongequal{D} \Delta_{1} ; \Delta_{2}}{\Gamma_{1} ; A \vee B, \Gamma_{2} \stackrel{C \wedge D}{\Longrightarrow} \Delta_{1} ; \Delta_{2}}
$$

- Let the last rule in π be an instance of a cut rule and A the cut formula. Then, $V(A) \subseteq V\left(\Gamma_{1} \cup \Delta_{1}\right)$ or $V(A) \subseteq V\left(\Gamma_{2} \cup \Delta_{2}\right)$. In former case, define

$$
\frac{\Gamma_{1} ; \Gamma_{2} \xrightarrow{C} \Delta_{1}, A ; \Delta_{2} \quad \Gamma_{1}, A ; \Gamma_{2} \xlongequal{D} \Delta_{1} ; \Delta_{2}}{\Gamma_{1} ; \Gamma_{2} \xrightarrow{C \vee D} \Delta_{1} ; \Delta_{2}}
$$

In the latter case, define

$$
\frac{\Gamma_{1} ; \Gamma_{2} \xlongequal{E} \Delta_{1} ; A, \Delta_{2} \quad \Gamma_{1} ; \Gamma_{2}, A \xlongequal{F} \Delta_{1} ; \Delta_{2}}{\Gamma_{1} ; \Gamma_{2} \stackrel{E \wedge F}{\Longrightarrow} \Delta_{1} ; \Delta_{2}}
$$

Theorem

Let π be a proof of $A ; \Rightarrow B$ in $\mathbf{L K}^{\text {at }} . \mathcal{M}(\pi)$ outputs an interpolant of $A \rightarrow B$.

Example

$$
\frac{p ; \stackrel{p}{\Longrightarrow} ; p}{p \wedge q ; \stackrel{p}{\Longrightarrow} ; p}\left(\frac{p \wedge q ; \xlongequal{p} ; p \vee q}{\text { p }}\right.
$$

$$
\frac{\frac{p ; \stackrel{p}{\Longrightarrow} ; p}{p \wedge q ; \xlongequal{p} ; p} \xrightarrow{p} \frac{; p \xlongequal{\top} ; p}{\Longrightarrow} ; p \wedge q ; \stackrel{p \wedge T}{\Longrightarrow} ; p \vee q}{p \wedge q} \text { cut }
$$

Theorem

Let π be a proof of $A ; \Rightarrow B$ in $\mathbf{L K}^{\text {at }} . \mathcal{M}(\pi)$ outputs an interpolant of $A \rightarrow B$.

Example

$$
\begin{aligned}
& \frac{\underset{p ; \stackrel{p}{\Longrightarrow} ; p}{p \wedge q ; \stackrel{p}{\Longrightarrow} ; p}}{p \wedge q ; \xlongequal{p} ; p \vee q} \\
& \begin{array}{c}
\underset{p \wedge q ; \stackrel{p}{\Longrightarrow} ; p}{\stackrel{p}{\Longrightarrow} ; p} \xrightarrow[{; p \xlongequal{\top} ; p \vee} q]{p \wedge q ; \stackrel{p \wedge \top}{\Longrightarrow} ; p \vee q} \text { cut }
\end{array}
\end{aligned}
$$

A formula is in negation normal form (NNF) when the negation is only allowed on atoms and the other connectives in the formula are \wedge and \vee.

Observation

The interpolants constructed via the Maehara algorithm are in NNF.

Outline

(1) Motivation

(2) Incompleteness results

(3) Completeness of Maehara algorithm for $\mathbf{L K}^{\text {at }}$

(4) Completeness up to pruning and subsumption

Simple incompleteness results

Definition

Interpolation algorithm \mathcal{I} is syntactically complete if for any valid $A \rightarrow B$ and any interpolant C of $A \rightarrow B$ there is a proof π s.t. $C=\mathcal{I}(\pi)$.

Simple incompleteness results

Definition

Interpolation algorithm \mathcal{I} is syntactically complete if for any valid $A \rightarrow B$ and any interpolant C of $A \rightarrow B$ there is a proof π s.t. $C=\mathcal{I}(\pi)$.

Observation

\mathcal{M} is syntactically incomplete.

Proof.

$\neg \neg p$ is an interpolant of $p \rightarrow p$ and not in NNF. So there is no π s.t. $\mathcal{M}(\pi)=\neg \neg p$.

Simple incompleteness results

Definition

Interpolation algorithm \mathcal{I} is syntactically complete if for any valid $A \rightarrow B$ and any interpolant C of $A \rightarrow B$ there is a proof π s.t. $C=\mathcal{I}(\pi)$.

Observation

\mathcal{M} is syntactically incomplete.

Proof.

$\neg \neg p$ is an interpolant of $p \rightarrow p$ and not in NNF. So there is no π s.t. $\mathcal{M}(\pi)=\neg \neg p$.

Definition

Interpolation algorithm \mathcal{I} is (semantically) complete if for any valid $A \rightarrow B$ and any interpolant C of $A \rightarrow B$ there is a proof π s.t. C is logically equivalent to $\mathcal{I}(\pi)$, denoted by $C \equiv \mathcal{I}(\pi)$.

Incompleteness result for $\mathbf{L K}^{-}$

The implication $p \wedge q \rightarrow p \vee q$ has the four interpolants $p, q, p \wedge q, p \vee q$.

Proposition

Maehara interpolation in $\mathbf{L K}^{-}$(i.e., LK without cut) is not complete.

Incompleteness result for R

Proposition

Standard interpolation in propositional resolution is not complete.

Question

Are the standard interpolation algorithms in resolution with weakening and in algebraic proof systems, such as cutting planes complete?

Outline

(1) Motivation
(2) Incompleteness results
(3) Completeness of Maehara algorithm for LK ${ }^{\text {at }}$

4 Completeness up to pruning and subsumption

Completeness of Maehara algorithm for $\mathbf{L K}^{2 t}$

Moving from $\mathbf{L K}^{-}$to the slightly stronger $\mathbf{L K}^{\text {at }}$ we get a full completeness result. Let us first prove the completeness for $\mathbf{L K}^{\text {lit }}$.

Theorem

Maehara interpolation in $\mathbf{L K}{ }^{\text {lit }}$ is complete.

Proof.

Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be an interpolant of an implication $A \rightarrow B$, where $C_{i}=\left\{\ell_{i, 1}, \ldots, \ell_{i, k_{i}}\right\}$, for $i=1, \ldots, n$.

Completeness of Maehara algorithm for $\mathbf{L K}^{2 t}$

Moving from $\mathbf{L K}^{-}$to the slightly stronger $\mathbf{L K}^{\text {at }}$ we get a full completeness result. Let us first prove the completeness for $\mathbf{L K}^{\text {lit }}$.

Theorem

Maehara interpolation in LK ${ }^{\text {lit }}$ is complete.

Proof.

Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be an interpolant of an implication $A \rightarrow B$, where $C_{i}=\left\{\ell_{i, 1}, \ldots, \ell_{i, k_{i}}\right\}$, for $i=1, \ldots, n$. Our strategy contains two parts:
(1) Constructing proofs $\pi_{i}: A ; \Rightarrow ; \ell_{i, 1}, \ldots, \ell_{i, k_{i}}$ s.t. $\mathcal{M}\left(\pi_{i}\right) \equiv C_{i}$.
(2) Constructing proofs $\sigma_{\bar{j}}: ; \ell_{1, j_{1}}, \ldots, \ell_{n, j_{n}} \Rightarrow ; B$, for

$$
\bar{j}=\left(j_{1}, \cdots, j_{n}\right) \in\left\{1, \cdots, k_{1}\right\} \times\left\{1, \cdots, k_{n}\right\} .
$$

Proof cont.

Proof.

Step 1. As \mathcal{C} is an interpolant of $A \rightarrow B$, we have $\mathbf{L K} \vdash A \Rightarrow \bigwedge_{i=1}^{n} C_{i}$. Thus, LK $\vdash A \Rightarrow C_{i}$ and LK $\vdash A \Rightarrow \ell_{i 1}, \ldots, \ell_{i k_{i}}$.

Proof cont.

Proof.

Step 1. As \mathcal{C} is an interpolant of $A \rightarrow B$, we have $\mathbf{L K} \vdash A \Rightarrow \bigwedge_{i=1}^{n} C_{i}$. Thus, $\mathbf{L K} \vdash A \Rightarrow C_{i}$ and $\mathbf{L K} \vdash A \Rightarrow \ell_{i 1}, \ldots, \ell_{i k_{i}}$. Let α_{i} be a cut-free proof of $A ; \Rightarrow \ell_{i 1}, \ldots, \ell_{i k_{i}} ;$. Easy: $\mathcal{M}\left(\alpha_{i}\right) \equiv \perp$.

Proof cont.

Proof.

Step 1. As \mathcal{C} is an interpolant of $A \rightarrow B$, we have $\mathbf{L K} \vdash A \Rightarrow \bigwedge_{i=1}^{n} C_{i}$. Thus, $\mathbf{L K} \vdash A \Rightarrow C_{i}$ and $\mathbf{L K} \vdash A \Rightarrow \ell_{i 1}, \ldots, \ell_{i k_{i}}$. Let α_{i} be a cut-free proof of $A ; \Rightarrow \ell_{i 1}, \ldots, \ell_{i k_{i}} ;$. Easy: $\mathcal{M}\left(\alpha_{i}\right) \equiv \perp$. Define π_{i} as:
α_{i}

We get $\mathcal{M}\left(\pi_{i}\right) \equiv C_{i}$.

Proof cont.

Proof.

Step 2. As \mathcal{C} is an interpolant, $\mathbf{L K} \vdash \mathcal{C} \Rightarrow B$. Thus
$\mathbf{L K} \vdash \ell_{1, j_{1}}, \ldots, \ell_{n, j_{n}} \Rightarrow B$, for $\bar{j}=\left(j_{1}, \cdots, j_{n}\right) \in\left\{1, \cdots, k_{1}\right\} \times\left\{1, \cdots, k_{n}\right\}$. Take $\sigma_{\bar{j}}$ as a cut-free proof of ; $\ell_{1, j_{1}}, \ldots, \ell_{n, j_{n}} \Rightarrow ; B$. Clearly, $\mathcal{M}\left(\sigma_{\bar{j}}\right) \equiv T$.

Claim: using cuts, weakening, and contraction on the proofs π_{i} and $\sigma_{\bar{j}}$ we get an $\mathbf{L K}^{\text {lit }}$ proof π for $A ; \Rightarrow B$ where the cut formula is on the right-hand side of the semicolon everywhere. Hence, the interpolant of the conclusion of each cut rule will be the conjunction of the interpolants of the premises. Thus we get $\mathcal{M}(\pi) \equiv \bigwedge_{i=1}^{n} C_{i} \wedge \top \cdots \wedge \top$.

Completeness for $\mathbf{L K}^{\text {at }}$

\mathcal{M} is just as complete in $\mathbf{L K}^{\text {at }}$ as it is in $\mathbf{L K}{ }^{\text {lit }}$. Function CNF maps formulas in NNF to clause sets: $\operatorname{CNF}(T)=\varnothing, \operatorname{CNF}(\perp)=\{\varnothing\}$, $\operatorname{CNF}(\ell)=\{\ell\}, \operatorname{CNF}(A \wedge B)=\operatorname{CNF}(A) \cup \operatorname{CNF}(B)$, $\operatorname{CNF}(A \vee B)=\operatorname{CNF}(A) \times \operatorname{CNF}(B)$, where ℓ is a literal, A and B are formulas, and define $\mathcal{C} \times \mathcal{D}:=\{C \cup D \mid C \in \mathcal{C}$ and $D \in \mathcal{D}\}$.

Completeness for $\mathbf{L K}^{\text {at }}$

\mathcal{M} is just as complete in $\mathbf{L K}^{\text {at }}$ as it is in $\mathbf{L K}{ }^{\text {lit }}$. Function CNF maps formulas in NNF to clause sets: $\operatorname{CNF}(T)=\varnothing, \operatorname{CNF}(\perp)=\{\varnothing\}$, $\operatorname{CNF}(\ell)=\{\ell\}, \operatorname{CNF}(A \wedge B)=\operatorname{CNF}(A) \cup \operatorname{CNF}(B)$, $\operatorname{CNF}(A \vee B)=\operatorname{CNF}(A) \times \operatorname{CNF}(B)$, where ℓ is a literal, A and B are formulas, and define $\mathcal{C} \times \mathcal{D}:=\{C \cup D \mid C \in \mathcal{C}$ and $D \in \mathcal{D}\}$.

Lemma

If π is an $\mathbf{L K}^{\text {lit }}$ proof of $\Gamma_{1} ; \Gamma_{2} \Rightarrow \Delta_{1} ; \Delta_{2}$ then there is an $\mathbf{L K}^{\text {at }}$ proof π^{\prime} of $\Gamma_{1} ; \Gamma_{2} \Rightarrow \Delta_{1} ; \Delta_{2}$ with $\operatorname{CNF}\left(\mathcal{M}\left(\pi^{\prime}\right)\right)=\operatorname{CNF}(\mathcal{M}(\pi))$.

Proof.

By a version of inversion lemma for negation that preserves the interpolant.

Completeness for $\mathbf{L K}^{\text {at }}$

\mathcal{M} is just as complete in $\mathbf{L K}^{\text {at }}$ as it is in $\mathbf{L K}{ }^{\text {lit }}$. Function CNF maps formulas in NNF to clause sets: $\operatorname{CNF}(T)=\varnothing, \operatorname{CNF}(\perp)=\{\varnothing\}$, $\operatorname{CNF}(\ell)=\{\ell\}, \operatorname{CNF}(A \wedge B)=\operatorname{CNF}(A) \cup \operatorname{CNF}(B)$, $\operatorname{CNF}(A \vee B)=\operatorname{CNF}(A) \times \operatorname{CNF}(B)$, where ℓ is a literal, A and B are formulas, and define $\mathcal{C} \times \mathcal{D}:=\{C \cup D \mid C \in \mathcal{C}$ and $D \in \mathcal{D}\}$.

Lemma

If π is an $\mathbf{L K}^{\text {lit }}$ proof of $\Gamma_{1} ; \Gamma_{2} \Rightarrow \Delta_{1} ; \Delta_{2}$ then there is an $\mathbf{L K}^{\text {at }}$ proof π^{\prime} of $\Gamma_{1} ; \Gamma_{2} \Rightarrow \Delta_{1} ; \Delta_{2}$ with $\operatorname{CNF}\left(\mathcal{M}\left(\pi^{\prime}\right)\right)=\operatorname{CNF}(\mathcal{M}(\pi))$.

Proof.

By a version of inversion lemma for negation that preserves the interpolant.

Corollary

Maehara interpolation in LK ${ }^{\text {at }}$ is complete.

Example

Find a proof $\pi: p \wedge q ; \Rightarrow ; p \vee q$ in $\mathbf{L K}^{\text {at }}$ s.t. $\mathcal{M}(\pi)=p \wedge q$. Denote $C_{1}=p$ and $C_{2}=q$.

$$
\pi_{1}: \frac{p ; \Rightarrow ; p}{p \wedge q ; \Rightarrow ; p} \quad \pi_{2}: \quad \frac{q ; \Rightarrow ; q}{p \wedge q ; \Rightarrow ; q}
$$

and $\mathcal{M}\left(\pi_{1}\right)=p$ and $\mathcal{M}\left(\pi_{2}\right)=q$. Take the following proof tree $\pi: p \wedge q ; \Rightarrow ; p \vee q$ in $\mathbf{L K}^{\text {at }}$ where $\mathcal{M}(\pi)$ is logically equivalent to $p \wedge q$.

		$; p \xlongequal{\top} ; p$
	π_{1}	$; p, q \xlongequal{\top} ; p$
π_{2}	$p \wedge q ; \xlongequal{p} ; p$	$p, q \xlongequal{\top} ; p \vee q$
$p \wedge q ; \xlongequal{q} ; q$	$p \wedge q ;$	$\xrightarrow{\top} ; p \vee q$
	$q ; \stackrel{q \wedge p \wedge \top}{\Longrightarrow} ; p \vee q$	

Outline

(1) Motivation

(2) Incompleteness results

(3) Completeness of Maehara algorithm for $\mathbf{L K}^{2 t}$

(4) Completeness up to pruning and subsumption

Although Maehara interpolation in $\mathbf{L K}^{-}$is incomplete, it is still possible to obtain positive results for $\mathbf{L K}^{-}$: if we restrict our attention to pruned interpolants, then Maehara interpolation is complete up to subsumption.

Subsumption

Definition

A clause set \mathcal{A} subsumes a clause set \mathcal{B}, in symbols $\mathcal{A} \leqslant_{\text {ss }} \mathcal{B}$, if for all $B \in \mathcal{B}$ there is an $A \in \mathcal{A}$ s.t. $A \subseteq B$.

For instance, $\{\{p\}\}$ subsumes $\{\{p, q\},\{p\}\}$.
Subsumption is one of the most useful and one of the most thoroughly studied mechanisms for the detection and elimination of redundancy in automated deduction. Note that, if $\mathcal{A} \leqslant_{\text {ss }} \mathcal{B}$ then $\mathcal{A} \models \mathcal{B}$. In this sense, subsumption is a restricted form of implication.

Pruned interpolant

Definition

A clause set \mathcal{A} is called pruned if no atom occurs both positively and negatively in \mathcal{A} and \mathcal{A} does not contain the literal T .

For instance, none of the following clause sets are pruned:

$$
\{\{p\},\{r, \neg p\}\} \quad\{\{T, p\}\} \quad\{\{p, \neg p\},\{r\}\}
$$

Pruned interpolant

Definition

A clause set \mathcal{A} is called pruned if no atom occurs both positively and negatively in \mathcal{A} and \mathcal{A} does not contain the literal T.

For instance, none of the following clause sets are pruned:

$$
\{\{p\},\{r, \neg p\}\} \quad\{\{T, p\}\} \quad\{\{p, \neg p\},\{r\}\}
$$

Definition

A pruned clause set \mathcal{C} is called pruned interpolant of a formula $A \rightarrow B$ if it is an interpolant of $A \rightarrow B$ and there are no $C^{\prime} \subset C \in \mathcal{C}$ with $A \models C^{\prime}$.

So a pruned interpolant, in addition to being a pruned clause set, must not contain redundant literals in the sense of the above definition.

Theorem

Let \mathcal{C} be a pruned interpolant of an implication $A \rightarrow B$. Then there is an $\mathbf{L K}^{-}$proof π of $A ; \Rightarrow B$ with $\mathcal{C} \leqslant_{\mathrm{ss}} \operatorname{CNF}(\mathcal{M}(\pi))$.

Proof.

The proof strategy consists of carrying out a cut elimination argument on a carefully chosen class of proofs. This class of proofs, called "tame" proofs, is a new invariant for cut-elimination. This class on the one hand is large enough to permit an embedding of all pruned interpolants, but on the other hand small enough to exhibit a very nice behavior during cut-elimination: the interpolant of the reduced proof is subsumed by the interpolant of the original proof.

Although interpolation in $\mathbf{L K}^{-}$is not complete, we still recover a desired interpolant $/$ in a restricted sense: after transforming I into a pruned interpolant \mathcal{C} we obtain a proof whose interpolant is subsumed by \mathcal{C}.

Example

The formula $p \wedge q \rightarrow p \vee q$ has the four interpolants $p \wedge q, p, q, p \vee q$. We know that the only interpolants obtainable from $\mathbf{L K}^{-}$proofs are p and q. The clause set $\{\{p, q\}\}$, representing the formula $p \vee q$, is not a pruned interpolant. The clause set $\{\{p\},\{q\}\}$, representing the formula $p \wedge q$, subsumes both $\{\{p\}\}$ and $\{\{q\}\}$.

Example

The formula $p \wedge q \rightarrow p \vee q$ has the four interpolants $p \wedge q, p, q, p \vee q$. We know that the only interpolants obtainable from $\mathbf{L K}^{-}$proofs are p and q. The clause set $\{\{p, q\}\}$, representing the formula $p \vee q$, is not a pruned interpolant. The clause set $\{\{p\},\{q\}\}$, representing the formula $p \wedge q$, subsumes both $\{\{p\}\}$ and $\{\{q\}\}$.

Question

- Is standard interpolation in resolution complete up to subsumption for pruned interpolants?
- Can we extend these results to the calculus LJ for the intuitionistic logic? How about other super intuitionistic or substructural logics?

Conclusion

Initiated the study of completeness properties of interpolation algorithms:

- Incompleteness of the standard algorithms for:
- Resolution and $\mathbf{L K}^{-}$.
- Cut-free sequent calculus for propositional modal logics K, KD, KT, K4, KD4, S4.
- Sequent calculus without cut or with atomic cuts for first-order logic.

Conclusion

Initiated the study of completeness properties of interpolation algorithms:

- Incompleteness of the standard algorithms for:
- Resolution and $\mathbf{L K}^{-}$.
- Cut-free sequent calculus for propositional modal logics K, KD, KT, K4, KD4, S4.
- Sequent calculus without cut or with atomic cuts for first-order logic.
- Completeness of the Maehara interpolation in:
- $\mathbf{L K}^{\text {at }}, \mathbf{L K}^{\text {lit }}$.
- LK $^{-}$: completeness of pruned interpolants up to subsumption.
- K, KD, KT, K4, KD4, S4 with cuts on atoms and boxed formulas.

Completeness properties of interpolation algorithms $\xlongequal{\text { corresponds to }}$
Completeness properties of Beth's definability theorem

Conclusion

Initiated the study of completeness properties of interpolation algorithms:

- Incompleteness of the standard algorithms for:
- Resolution and $\mathbf{L K}^{-}$.
- Cut-free sequent calculus for propositional modal logics K, KD, KT, K4, KD4, S4.
- Sequent calculus without cut or with atomic cuts for first-order logic.
- Completeness of the Maehara interpolation in:
- $\mathbf{L K}^{\text {at }}, \mathbf{L K}^{\text {lit }}$.
- LK $^{-}$: completeness of pruned interpolants up to subsumption.
- K, KD, KT, K4, KD4, S4 with cuts on atoms and boxed formulas.

Completeness properties of interpolation algorithms $\xlongequal{\text { corresponds to }}$
Completeness properties of Beth's definability theorem

> Thank you for your attention.

