On the Completeness of Interpolation Procedures

Raheleh Jalali (joint work with Stefan Hetzl)

Institute of Computer Science, The Czech Academy of Sciences

CIBD

23 April, 2024

э

2 Incompleteness results

3 Completeness of Maehara algorithm for LK^{at}

4 Completeness up to pruning and subsumption

э

Aim: Gauging the expressive power of interpolation algorithms.

Question

Which interpolants can be obtained from an interpolation algorithm?

Motivated by this question, we initiate the study of the *completeness properties* of interpolation algorithms.

Aim: Gauging the expressive power of interpolation algorithms.

Question

Which interpolants can be obtained from an interpolation algorithm?

Motivated by this question, we initiate the study of the *completeness properties* of interpolation algorithms.

Definition

Fix a calculus and an interpolation algorithm \mathcal{I} . We say \mathcal{I} is complete if, for every semantically possible interpolant C of an implication $A \to B$, there is a proof P of $A \to B$ such that C is logically equivalent to $\mathcal{I}(P)$.

ヘロト ヘ回ト ヘヨト ヘヨト

Completeness of interpolation algorithms

The practical relevance of a completeness result is that it provides a guarantee that, at least in principle, the algorithm allows us to find the "good" interpolants, whatever that may mean in the concrete application under consideration.

Results: We establish incompleteness and different kinds of completeness results for several standard algorithms for resolution and the sequent calculus for propositional, modal, and first-order logic.

Getting ready

- Propositional language L_p = {⊥, ∧, ∨, ¬}. Define A → B := ¬A ∨ B and ⊤ := ⊥ → ⊥.
- \bullet A literal ℓ is either an atom or a negation of an atom.
- A clause C is a finite disjunction of literals C = ℓ₁ ∨ · · · ∨ ℓ_n, also written as C = {ℓ₁,..., ℓ_n}.
- By a *clause set* we mean a set $C = \{C_1, \ldots, C_n\}$ of clauses $C_i = \{\ell_{i1}, \ldots, \ell_{ik_i}\}$ and the *formula interpretation* of C is $\bigwedge_{i=1}^n \bigvee_{j=1}^{k_i} \ell_{ij}$.
- A formula is in *conjunctive normal form* (CNF) if it is a conjunction of disjunctions of literals.
- For a formula A, the set of its variables is denoted by V(A).

Definition

A logic *L* has the *Craig Interpolation Property* (*CIP*) if for any formulas *A* and *B* if $A \rightarrow B \in L$ then there exists a formula *C* such that $V(C) \subseteq V(A) \cap V(B)$ and $A \rightarrow C \in L$ and $C \rightarrow B \in L$.

Resolution R

Propositional *resolution*, R, is one of the weakest proof systems. Resolution operates on clauses.

A <u>resolution proof</u>, also called a *resolution refutation*, shows the unsatisfiability of a set of initial clauses by starting with these clauses and deriving new clauses by the *resolution rule*

$$\frac{C \cup \{p\}}{C \cup D} \frac{D \cup \{\neg p\}}{D \cup \nabla}$$

until the empty clause \perp is derived, where *C* and *D* are clauses. We can interpret resolution as a refutation system: instead of proving a formula *A* is true we prove that $\neg A$ is unsatisfiable.

Resolution with weakening: Add the weakening rule to the R:

$$\frac{C}{C \cup D}$$

for arbitrary clauses C and D.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Given: *P*, a resolution proof of \perp from the clauses $A_i(\bar{p}, \bar{q})$ and $B_j(\bar{p}, \bar{r})$, where $i \in I$, $j \in J$, and $\bar{p}, \bar{q}, \bar{r}$ are disjoint sets of atoms.

Define a ternary connective *sel* as $sel(A, x, y) = (\neg A \rightarrow x) \land (A \rightarrow y) = (A \lor x) \land (\neg A \lor y).$

Example

$$sel(\bot, x, y) = x$$
, $sel(\top, x, y) = y$, $sel(A, \bot, \top) = A$, and $sel(A, \top, \bot) = \neg A$.

Interpolation algorithm: Assign \perp to clauses A_i for each $i \in I$ and assign \top to clauses B_j for $j \in J$. Then:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Interpolation algorithm for R

For the resolution rule is of the following form for $p_k \in \bar{p}$ define

$$\frac{\Gamma, p_k \quad \Delta, \neg p_k}{\Gamma, \Delta} \quad \stackrel{\text{int}}{\leadsto} \quad \frac{x \quad y}{sel(p_k, x, y)}$$

or when $q_k \in \bar{q}$

$$\frac{\Gamma, q_k \quad \Delta, \neg q_k}{\Gamma, \Delta} \quad \stackrel{\text{int}}{\leadsto} \quad \frac{x \quad y}{x \lor y}$$

or when $r_k \in \bar{r}$

$$\frac{\Gamma, r_k \quad \Delta, \neg r_k}{\Gamma, \Delta} \quad \stackrel{\text{int}}{\leadsto} \quad \frac{x \quad y}{x \land y}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Interpolation algorithm for R

For the resolution rule is of the following form for $p_k \in \bar{p}$ define

$$\frac{[\Gamma, p_k] \Delta, \neg p_k}{[\Gamma, \Delta]} \stackrel{\text{int}}{\longrightarrow} \frac{x \ y}{sel(p_k, x, y)}$$

or when $q_k \in \bar{q}$

$$\frac{[\Gamma, q_k] \Delta, \neg q_k}{[\Gamma, \Delta]} \stackrel{\text{int}}{\sim} \frac{x \ y}{x \lor y}$$

or when $r_k \in \bar{r}$

$$\frac{\Gamma, r_k \quad \Delta, \neg r_k}{\Gamma, \Delta} \quad \stackrel{\text{int}}{\leadsto} \quad \frac{x \quad y}{x \land y}$$

Theorem (Krajíček, Pudlák)

Let π be a resolution refutation of the set of clauses $\{A_i(\bar{p}, \bar{q}) \mid i \in I\}$ and $\{B_j(\bar{p}, \bar{q}) \mid j \in J\}$. Then, the interpolation algorithm outputs an interpolant for the valid formula $\bigwedge_{i \in I} A_i(\bar{p}, \bar{q}) \rightarrow \bigvee_{j \in J} \neg B_j(\bar{p}, \bar{q})$.

Example

Consider the unsatisfiable sets of clauses: $A_1 = \{p, \neg q\}, A_2 = \{q\}, B_1 = \{\neg p, r\}, B_2 = \{\neg r\}$ $\frac{p, \neg q \quad q}{p} \quad \neg p, r \qquad \qquad \text{int} \quad \frac{\bot \quad \bot}{\Box \lor \bot = \bot \quad \top} \quad \frac{\bot \quad \bot}{\mathsf{sel}(p, \bot, \top) = p} \quad \top$ $p \wedge \top = p$

The algorithm outputs p. The unsatisfiable formula that we started with was $F = A_1 \wedge A_2 \wedge B_1 \wedge B_2 = (p \vee \neg q) \wedge q \wedge (\neg p \vee r) \wedge \neg r$. Thus, $\neg F = (p \land q) \rightarrow (p \lor r)$, which is $(A_1 \land A_2) \rightarrow (\neg B_1 \lor \neg B_2)$ is valid and p is its interpolant.

Sequent calculus **LK**

 Γ, Δ : multisets of formulas. Interpretation of sequent $\Gamma \Rightarrow \Delta$: $\bigwedge \Gamma \rightarrow \bigvee \Delta$.

$$p \Rightarrow p \quad (Ax)$$

$$\frac{\Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta} (Lw)$$

$$\frac{A, A, \Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta} (Lc)$$

$$\frac{A, \Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta} (Lc)$$

$$\frac{A, \Gamma \Rightarrow \Delta}{A \land B, \Gamma \Rightarrow \Delta} (L \land 1)$$

$$\frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \land B} (R \land)$$

$$\frac{\Gamma \Rightarrow \Delta, A}{-A, \Gamma \Rightarrow \Delta} (R \lor 2)$$

$$\frac{\Gamma \Rightarrow \Delta, A}{-A, \Gamma \Rightarrow \Delta} (L \neg)$$

$$\frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A \land B} (cut)$$

$$\begin{array}{c} \bot \Rightarrow (\bot) \\ \hline \Gamma \Rightarrow \Delta, A \ (Rw) \\ \hline \Gamma \Rightarrow \Delta, A \ (Rw) \\ \hline \Gamma \Rightarrow \Delta, A \ (Rc) \\ \hline B, \Gamma \Rightarrow \Delta \\ \hline A \land B, \Gamma \Rightarrow \Delta \ (L \land _2) \\ \hline \hline A \land B, \Gamma \Rightarrow \Delta \ (L \land _2) \\ \hline \hline A \land B, \Gamma \Rightarrow \Delta \ (L \land _2) \\ \hline \hline A \land B, \Gamma \Rightarrow \Delta \ (L \land _2) \\ \hline \hline \hline A \land B, \Gamma \Rightarrow \Delta \ (L \land _2) \\ \hline \hline \hline F \Rightarrow \Delta, A \lor B \ (R \lor _1) \\ \hline \hline A \lor B, \Gamma \Rightarrow \Delta \ (L \land _2) \\ \hline \hline \hline F \Rightarrow \Delta, A \lor B \ (R \lor _1) \\ \hline \hline A \lor B, \Gamma \Rightarrow \Delta \ (L \land _2) \\ \hline \hline \hline F \Rightarrow \Delta, -A \ (R \lor) \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The cut rule is called **atomic** when the cut formula is an atom or \bot or \top .

Denote **LK** with only atomic cuts by **LK**^{at}, denote **LK** with cuts only on literals by **LK**^{lit}, and denote cut-free **LK** by **LK**⁻.

э

イロト イ理ト イヨト イヨト

The cut rule is called **atomic** when the cut formula is an atom or \perp or \top .

Denote **LK** with only atomic cuts by **LK**^{at}, denote **LK** with cuts only on literals by **LK**^{lit}, and denote cut-free **LK** by **LK**⁻.

Split sequent: $\Gamma_1; \Gamma_2 \Rightarrow \Delta_1; \Delta_2$ such that $\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2$ is a sequent. Let π be a proof of $\Gamma_1; \Gamma_2 \Rightarrow \Delta_1; \Delta_2$ in **LK**^{*at*}. Define the Maehara *interpolant* $\mathcal{M}(\pi) = C$, recursively s.t.

$$\mathbf{LK}^{\mathrm{at}} \vdash \Gamma_1 \Rightarrow \Delta_1, C \quad \text{and} \quad \mathbf{LK}^{\mathrm{at}} \vdash C, \Gamma_2 \Rightarrow \Delta_2$$

and $V(\mathcal{C}) \subseteq V(\Gamma_1 \cup \Delta_1) \cap V(\Gamma_2 \cup \Delta_2)$. Denote $\Gamma_1; \Gamma_2 \stackrel{\mathcal{C}}{\Longrightarrow} \Delta_1; \Delta_2$.

▲日▼▲□▼▲□▼▲□▼ □ ● ●

Maehara interpolation algorithm \mathcal{M}

• If π is an axiom:

$$p; \stackrel{\perp}{\Longrightarrow} p; ; p \stackrel{\top}{\Longrightarrow}; p \stackrel{\perp}{\longrightarrow}; p \stackrel{\perp}{\Longrightarrow}; p \stackrel{\perp}{\Longrightarrow}; p \stackrel{\perp}{\Longrightarrow}; p \stackrel{\neg}{\Longrightarrow}; p \stackrel{\neg}{\rightarrow}; p \stackrel{\neg}{\Longrightarrow}; p \stackrel{\neg}{\rightarrow}; p \stackrel{$$

If the last rule applied in π is one of the one-premise rules, then the interpolant of the premise works as the interpolant for the conclusion.
If the last rule in π is (R∧), then:

$$\frac{\Gamma_{1};\Gamma_{2} \stackrel{C}{\Longrightarrow} \Delta_{1}, A; \Delta_{2} \qquad \Gamma_{1};\Gamma_{2} \stackrel{D}{\Longrightarrow} \Delta_{1}, B; \Delta_{2}}{\Gamma_{1};\Gamma_{2} \stackrel{C \vee D}{\Longrightarrow} \Delta_{1}, A \wedge B; \Delta_{2}}$$

^	`	~	
۰.	,		

$$\frac{\Gamma_{1};\Gamma_{2} \stackrel{C}{\Longrightarrow} \Delta_{1};A,\Delta_{2}}{\Gamma_{1};\Gamma_{2} \stackrel{D}{\Longrightarrow} \Delta_{1};B,\Delta_{2}}$$

Maehara interpolation algorithm \mathcal{M} , cont.

• If the last rule in π is $(L \lor)$, then:

$$\begin{array}{c} \Gamma_1, A; \Gamma_2 \stackrel{C}{\Longrightarrow} \Delta_1; \Delta_2 \qquad \Gamma_1, B; \Gamma_2 \stackrel{D}{\Longrightarrow} \Delta_1; \Delta_2 \\ \hline \Gamma_1, A \lor B; \Gamma_2 \stackrel{C \lor D}{\Longrightarrow} \Delta_1; \Delta_2 \end{array}$$

or

$$\frac{\Gamma_1; A, \Gamma_2 \stackrel{C}{\Longrightarrow} \Delta_1; \Delta_2 \qquad \Gamma_1; B, \Gamma_2 \stackrel{D}{\Longrightarrow} \Delta_1; \Delta_2}{\Gamma_1; A \lor B, \Gamma_2 \stackrel{C \land D}{\Longrightarrow} \Delta_1; \Delta_2}$$

• Let the last rule in π be an instance of a cut rule and A the cut formula. Then, $V(A) \subseteq V(\Gamma_1 \cup \Delta_1)$ or $V(A) \subseteq V(\Gamma_2 \cup \Delta_2)$. In former case, define

$$\frac{\Gamma_{1}; \Gamma_{2} \stackrel{C}{\Longrightarrow} \Delta_{1}, A; \Delta_{2} \qquad \Gamma_{1}, A; \Gamma_{2} \stackrel{D}{\Longrightarrow} \Delta_{1}; \Delta_{2}}{\Gamma_{1}; \Gamma_{2} \stackrel{C \lor D}{\Longrightarrow} \Delta_{1}; \Delta_{2}}$$

In the latter case, define

$$\frac{\Gamma_{1};\Gamma_{2} \stackrel{E}{\Longrightarrow} \Delta_{1};A,\Delta_{2} \qquad \Gamma_{1};\Gamma_{2},A \stackrel{F}{\Longrightarrow} \Delta_{1};\Delta_{2}}{\Gamma_{1};\Gamma_{2} \stackrel{E \wedge F}{\Longrightarrow} \Delta_{1};\Delta_{2}}$$

Theorem

Let π be a proof of A; \Rightarrow ; B in \mathbf{LK}^{at} . $\mathcal{M}(\pi)$ outputs an interpolant of $A \rightarrow B$.

Example $p; \stackrel{p}{\Longrightarrow}; p$ $p; \stackrel{p}{\Longrightarrow}; p$ $; p \stackrel{T}{\Longrightarrow}; p$ $p, q; \stackrel{p}{\Longrightarrow}; p$ $p, q; \stackrel{p}{\Longrightarrow}; p$ $; p \stackrel{T}{\Longrightarrow}; p \lor q$ $p \land q; \stackrel{p}{\Longrightarrow}; p \lor q$ $p \land q; \stackrel{p}{\Longrightarrow}; p \lor q$ cut

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへ⊙

Theorem

Let π be a proof of A; \Rightarrow ; B in \mathbf{LK}^{at} . $\mathcal{M}(\pi)$ outputs an interpolant of $A \rightarrow B$.

Example $\frac{p; \stackrel{p}{\Longrightarrow}; p}{p \land q; \stackrel{p}{\Longrightarrow}; p} \xrightarrow{; p \stackrel{\top}{\Longrightarrow}; p} (p \stackrel{\tau}{\Rightarrow}; p \lor q)$ $p; \stackrel{p}{\Longrightarrow}; p$ $p \land q; \stackrel{p}{\Longrightarrow}; p$ $p \land q; \stackrel{p}{\Longrightarrow}; p \lor q$

A formula is in *negation normal form (NNF)* when the negation is only allowed on atoms and the other connectives in the formula are \land and \lor .

Observation

The interpolants constructed via the Maehara algorithm are in NNF.

Incompleteness results

3 Completeness of Maehara algorithm for LK^{at}

4 Completeness up to pruning and subsumption

э

Interpolation algorithm \mathcal{I} is syntactically complete if for any valid $A \to B$ and any interpolant C of $A \to B$ there is a proof π s.t. $C = \mathcal{I}(\pi)$.

イロト イヨト イヨト -

Simple incompleteness results

Definition

Interpolation algorithm \mathcal{I} is syntactically complete if for any valid $A \to B$ and any interpolant C of $A \to B$ there is a proof π s.t. $C = \mathcal{I}(\pi)$.

Observation

 ${\mathcal M}$ is syntactically incomplete.

Proof.

 $\neg \neg p$ is an interpolant of $p \rightarrow p$ and not in NNF. So there is no π s.t. $\mathcal{M}(\pi) = \neg \neg p$.

Simple incompleteness results

Definition

Interpolation algorithm \mathcal{I} is syntactically complete if for any valid $A \to B$ and any interpolant C of $A \to B$ there is a proof π s.t. $C = \mathcal{I}(\pi)$.

Observation

 $\ensuremath{\mathcal{M}}$ is syntactically incomplete.

Proof.

 $\neg \neg p$ is an interpolant of $p \rightarrow p$ and not in NNF. So there is no π s.t. $\mathcal{M}(\pi) = \neg \neg p$.

Definition

Interpolation algorithm \mathcal{I} is *(semantically) complete* if for any valid $A \rightarrow B$ and any interpolant C of $A \rightarrow B$ there is a proof π s.t. C is logically equivalent to $\mathcal{I}(\pi)$, denoted by $C \equiv \mathcal{I}(\pi)$.

The implication $p \land q \rightarrow p \lor q$ has the four interpolants $p, q, p \land q, p \lor q$.

Proposition

Maehara interpolation in **LK**⁻ (i.e., **LK** without cut) is not complete.

イロト イ理ト イヨト イヨト

3

王

Incompleteness result for R

Proposition

Standard interpolation in propositional resolution is not complete.

Completeness of Interpolation Procedures

Question

Are the standard interpolation algorithms in **resolution with weakening** and in algebraic proof systems, such as **cutting planes** complete?

< ∃ >

Image: A math a math

3 Completeness of Maehara algorithm for LK^{at}

4 Completeness up to pruning and subsumption

э

Completeness of Maehara algorithm for LK^{at}

Moving from $\boldsymbol{\mathsf{LK}}^-$ to the slightly stronger $\boldsymbol{\mathsf{LK}}^{\mathrm{at}}$ we get a full completeness result. Let us first prove the completeness for $\boldsymbol{\mathsf{LK}}^{\mathrm{lit}}.$

Theorem

Maehara interpolation in **LK**^{lit} is complete.

Proof.

Let $C = \{C_1, \ldots, C_n\}$ be an interpolant of an implication $A \to B$, where $C_i = \{\ell_{i,1}, \ldots, \ell_{i,k_i}\}$, for $i = 1, \ldots, n$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Completeness of Maehara algorithm for LK^{at}

Moving from $\boldsymbol{\mathsf{LK}}^-$ to the slightly stronger $\boldsymbol{\mathsf{LK}}^{\mathrm{at}}$ we get a full completeness result. Let us first prove the completeness for $\boldsymbol{\mathsf{LK}}^{\mathrm{lit}}.$

Theorem

Maehara interpolation in **LK**^{lit} is complete.

Proof.

Let C = {C₁,..., C_n} be an interpolant of an implication A → B, where C_i = {l_i,1,..., l_{i,ki}}, for i = 1,..., n. Our strategy contains two parts:
Constructing proofs π_i : A; ⇒ ; l_i,1,..., l_{i,ki} s.t. M(π_i) ≡ C_i.
Constructing proofs σ_j : ; l_{1,j1},..., l_{n,jn} ⇒ ; B, for j = (j₁,..., j_n) ∈ {1,..., k₁} × {1,..., k_n}.

Proof cont.

Proof.

Step 1. As C is an interpolant of $A \to B$, we have $\mathbf{LK} \vdash A \Rightarrow \bigwedge_{i=1}^{n} C_i$. Thus, $\mathbf{LK} \vdash A \Rightarrow C_i$ and $\mathbf{LK} \vdash A \Rightarrow \ell_{i1}, \dots, \ell_{ik_i}$.

Proof cont.

Proof.

Step 1. As C is an interpolant of $A \to B$, we have $\mathbf{LK} \vdash A \Rightarrow \bigwedge_{i=1}^{n} C_i$. Thus, $\mathbf{LK} \vdash A \Rightarrow C_i$ and $\mathbf{LK} \vdash A \Rightarrow \ell_{i1}, \dots, \ell_{ik_i}$. Let α_i be a cut-free proof of A; $\Rightarrow \ell_{i1}, \dots, \ell_{ik_i}$; Easy: $\mathcal{M}(\alpha_i) \equiv \bot$.

Proof cont.

Proof.

Step 1. As C is an interpolant of $A \to B$, we have $\mathbf{LK} \vdash A \Rightarrow \bigwedge_{i=1}^{n} C_i$. Thus, $\mathbf{LK} \vdash A \Rightarrow C_i$ and $\mathbf{LK} \vdash A \Rightarrow \ell_{i1}, \dots, \ell_{ik_i}$. Let α_i be a cut-free proof of A; $\Rightarrow \ell_{i1}, \dots, \ell_{ik_i}$; Easy: $\mathcal{M}(\alpha_i) \equiv \bot$. Define π_i as:

 α

$$\frac{A_{i} \stackrel{\perp}{\Longrightarrow} \ell_{i1}, \ell_{i2}, \dots, \ell_{ik_{i}}; \ell_{i1}}{A_{i} \Rightarrow \ell_{i1}, \ell_{i2}, \dots, \ell_{ik_{i}}; \ell_{i1}} \stackrel{(i)}{\overline{A, \ell_{i1}; \Rightarrow \ell_{i2}, \dots, \ell_{ik_{i}}; \ell_{i1}}}_{(w)} (w)$$

$$\frac{A_{i} \stackrel{i}{\Longrightarrow} \ell_{i2}, \dots, \ell_{ik_{i}}; \ell_{i1}}{A_{i} \Rightarrow \ell_{ik_{i}}; \ell_{i1}, \dots, \ell_{ik_{i}}} \stackrel{(w)}{\overline{A, \ell_{i1}; \Rightarrow \ell_{i2}, \dots, \ell_{ik_{i}}; \ell_{i1}}}_{(i)} (w)$$

$$\frac{A_{i} \stackrel{i}{\Longrightarrow} \ell_{ik_{i}}; \ell_{i1}, \dots, \ell_{ik_{i-1}}}{A_{i} \Rightarrow \ell_{ik_{i}}; \ell_{i1}, \dots, \ell_{ik_{i-1}}} \stackrel{\ell_{ik_{i}}; \frac{\ell_{ik_{i}}}{\overline{A, \ell_{ik_{i}}; \Rightarrow; \ell_{i1}, \dots, \ell_{ik_{i}}}}}_{A_{i} \stackrel{i}{\Longrightarrow} (\ell_{i1}, \dots, \ell_{ik_{i}})} (w)$$

$$\frac{A_{i} \stackrel{i}{\Longrightarrow} \stackrel{i}{\Longrightarrow} \ell_{i1}, \dots, \ell_{ik_{i-1}}}{A_{i} \stackrel{i}{\Longrightarrow} (\ell_{i1}, \dots, \ell_{ik_{i}})} \stackrel{i}{\longrightarrow} \ell_{i1}, \dots, \ell_{ik_{i}}} (w)$$

We get $\mathcal{M}(\pi_i) \equiv C_i$.

Raheleh Jalali

Proof.

Step 2. As C is an interpolant, $\mathbf{LK} \vdash C \Rightarrow B$. Thus $\mathbf{LK} \vdash \ell_{1,j_1}, \dots, \ell_{n,j_n} \Rightarrow B$, for $\overline{j} = (j_1, \dots, j_n) \in \{1, \dots, k_1\} \times \{1, \dots, k_n\}$. Take $\sigma_{\overline{j}}$ as a cut-free proof of ; $\ell_{1,j_1}, \dots, \ell_{n,j_n} \Rightarrow$; B. Clearly, $\mathcal{M}(\sigma_{\overline{j}}) \equiv \top$.

Claim: using cuts, weakening, and contraction on the proofs π_i and $\sigma_{\overline{j}}$ we get an **LK**^{lit} proof π for A; \Rightarrow ; B where the cut formula is on the right-hand side of the semicolon everywhere. Hence, the interpolant of the conclusion of each cut rule will be the conjunction of the interpolants of the premises. Thus we get $\mathcal{M}(\pi) \equiv \bigwedge_{i=1}^{n} C_i \wedge \top \cdots \wedge \top$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

Completeness for $\mathbf{LK}^{\mathrm{at}}$

 \mathcal{M} is just as complete in \mathbf{LK}^{at} as it is in \mathbf{LK}^{lit} . Function CNF maps formulas in NNF to clause sets: $\text{CNF}(\top) = \emptyset$, $\text{CNF}(\bot) = \{\emptyset\}$, $\text{CNF}(\ell) = \{\ell\}$, $\text{CNF}(A \land B) = \text{CNF}(A) \cup \text{CNF}(B)$, $\text{CNF}(A \lor B) = \text{CNF}(A) \times \text{CNF}(B)$, where ℓ is a literal, A and B are formulas, and define $\mathcal{C} \times \mathcal{D} := \{\mathcal{C} \cup D \mid \mathcal{C} \in \mathcal{C} \text{ and } D \in \mathcal{D}\}$.

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Completeness for **LK**^{at}

 \mathcal{M} is just as complete in **LK**^{at} as it is in **LK**^{lit}. Function CNF maps formulas in NNF to clause sets: $CNF(\top) = \emptyset$, $CNF(\bot) = \{\emptyset\}$, $\operatorname{CNF}(\ell) = \{\ell\}, \operatorname{CNF}(A \land B) = \operatorname{CNF}(A) \cup \operatorname{CNF}(B),$ $CNF(A \lor B) = CNF(A) \times CNF(B)$, where ℓ is a literal, A and B are formulas, and define $C \times D := \{C \cup D \mid C \in C \text{ and } D \in D\}$.

Lemma

If π is an **LK**^{lit} proof of $\Gamma_1; \Gamma_2 \Rightarrow \Delta_1; \Delta_2$ then there is an **LK**^{at} proof π' of $\Gamma_1; \Gamma_2 \Rightarrow \Delta_1; \Delta_2 \text{ with } \operatorname{CNF}(\mathcal{M}(\pi')) = \operatorname{CNF}(\mathcal{M}(\pi)).$

Proof.

By a version of inversion lemma for negation that preserves the interpolant.

Completeness for $\mathbf{LK}^{\mathrm{at}}$

 \mathcal{M} is just as complete in $\mathbf{LK}^{\mathrm{at}}$ as it is in $\mathbf{LK}^{\mathrm{lit}}$. Function CNF maps formulas in NNF to clause sets: $\mathrm{CNF}(\top) = \emptyset$, $\mathrm{CNF}(\bot) = \{\emptyset\}$, $\mathrm{CNF}(\ell) = \{\ell\}$, $\mathrm{CNF}(A \land B) = \mathrm{CNF}(A) \cup \mathrm{CNF}(B)$, $\mathrm{CNF}(A \lor B) = \mathrm{CNF}(A) \times \mathrm{CNF}(B)$, where ℓ is a literal, A and B are formulas, and define $\mathcal{C} \times \mathcal{D} := \{\mathcal{C} \cup D \mid \mathcal{C} \in \mathcal{C} \text{ and } D \in \mathcal{D}\}$.

Lemma

If π is an $\mathsf{LK}^{\mathrm{lit}}$ proof of $\Gamma_1; \Gamma_2 \Rightarrow \Delta_1; \Delta_2$ then there is an $\mathsf{LK}^{\mathrm{at}}$ proof π' of $\Gamma_1; \Gamma_2 \Rightarrow \Delta_1; \Delta_2$ with $\mathrm{CNF}(\mathcal{M}(\pi')) = \mathrm{CNF}(\mathcal{M}(\pi)).$

Proof.

By a version of inversion lemma for negation that preserves the interpolant.

Corollary

Maehara interpolation in **LK**^{at} *is complete.*

Raheleh Jalali

Completeness of Interpolation Procedures

23 April, 2024

26 / 36

э

王

Example

Find a proof $\pi : p \land q; \Rightarrow; p \lor q$ in $\mathsf{LK}^{\mathrm{at}}$ s.t. $\mathcal{M}(\pi) = p \land q$. Denote $C_1 = p$ and $C_2 = q$.

$$\pi_1: \quad \frac{p; \Rightarrow; p}{p \land q; \Rightarrow; p} \qquad \pi_2: \quad \frac{q; \Rightarrow; q}{p \land q; \Rightarrow; q}$$

and $\mathcal{M}(\pi_1) = p$ and $\mathcal{M}(\pi_2) = q$. Take the following proof tree $\pi : p \land q; \Rightarrow; p \lor q$ in $\mathsf{LK}^{\mathrm{at}}$ where $\mathcal{M}(\pi)$ is logically equivalent to $p \land q$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

2 Incompleteness results

3 Completeness of Maehara algorithm for LK^{at}

4 Completeness up to pruning and subsumption

э

Although Maehara interpolation in LK^- is incomplete, it is still possible to obtain positive results for LK^- : if we restrict our attention to *pruned interpolants*, then Maehara interpolation is complete up to subsumption.

A clause set \mathcal{A} subsumes a clause set \mathcal{B} , in symbols $\mathcal{A} \leq_{ss} \mathcal{B}$, if for all $B \in \mathcal{B}$ there is an $A \in \mathcal{A}$ s.t. $A \subseteq B$.

For instance, $\{\{p\}\}$ subsumes $\{\{p,q\},\{p\}\}$.

Subsumption is one of the most useful and one of the most thoroughly studied mechanisms for the detection and elimination of redundancy in automated deduction. Note that, if $\mathcal{A} \leq_{ss} \mathcal{B}$ then $\mathcal{A} \models \mathcal{B}$. In this sense, subsumption is a restricted form of implication.

A clause set \mathcal{A} is called *pruned* if no atom occurs both positively and negatively in \mathcal{A} and \mathcal{A} does not contain the literal \top .

For instance, none of the following clause sets are pruned:

$$\{\{p\}, \{r, \neg p\}\} \qquad \{\{\top, p\}\} \qquad \{\{p, \neg p\}, \{r\}\}$$

A clause set \mathcal{A} is called *pruned* if no atom occurs both positively and negatively in \mathcal{A} and \mathcal{A} does not contain the literal \top .

For instance, none of the following clause sets are pruned:

$$\{\{p\}, \{r, \neg p\}\} \qquad \{\{\top, p\}\} \qquad \{\{p, \neg p\}, \{r\}\}$$

Definition

A pruned clause set C is called *pruned interpolant* of a formula $A \to B$ if it is an interpolant of $A \to B$ and there are no $C' \subset C \in C$ with $A \models C'$.

So a pruned interpolant, in addition to being a pruned clause set, must not contain redundant literals in the sense of the above definition.

(ロト (雪下 (ヨト (ヨト))

Theorem

Let C be a pruned interpolant of an implication $A \to B$. Then there is an LK^- proof π of A; \Rightarrow ; B with $C \leq_{ss} CNF(\mathcal{M}(\pi))$.

Proof.

The proof strategy consists of carrying out a cut elimination argument on a carefully chosen class of proofs. This class of proofs, called "tame" proofs, is a new invariant for cut-elimination. This class on the one hand is large enough to permit an embedding of all pruned interpolants, but on the other hand small enough to exhibit a very nice behavior during cut-elimination: the interpolant of the reduced proof is subsumed by the interpolant of the original proof.

Although interpolation in LK^- is not complete, we still recover a desired interpolant I in a restricted sense: after transforming I into a pruned interpolant C we obtain a proof whose interpolant is subsumed by C.

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Raheleh Jalali

Completeness of Interpolation Procedures

23 April, 2024

Example

The formula $p \land q \rightarrow p \lor q$ has the four interpolants $p \land q, p, q, p \lor q$. We know that the only interpolants obtainable from \mathbf{LK}^- proofs are p and q. The clause set $\{\{p,q\}\}$, representing the formula $p \lor q$, is not a pruned interpolant. The clause set $\{\{p\}, \{q\}\}$, representing the formula $p \land q$, subsumes both $\{\{p\}\}$ and $\{\{q\}\}$.

Example

The formula $p \land q \rightarrow p \lor q$ has the four interpolants $p \land q, p, q, p \lor q$. We know that the only interpolants obtainable from **LK**⁻ proofs are p and q. The clause set $\{\{p,q\}\}$, representing the formula $p \lor q$, is not a pruned interpolant. The clause set $\{\{p\}, \{q\}\}$, representing the formula $p \land q$, subsumes both $\{\{p\}\}$ and $\{\{q\}\}$.

Question

• Is standard interpolation in resolution complete up to subsumption for pruned interpolants?

• Can we extend these results to the calculus **LJ** for the intuitionistic logic? How about other super intuitionistic or substructural logics?

Conclusion

Initiated the study of completeness properties of interpolation algorithms:

- Incompleteness of the standard algorithms for:
 - Resolution and LK⁻.
 - Cut-free sequent calculus for propositional modal logics
 K, KD, KT, K4, KD4, S4.
 - ▶ Sequent calculus without cut or with atomic cuts for first-order logic.

Conclusion

Initiated the study of completeness properties of interpolation algorithms:

- Incompleteness of the standard algorithms for:
 - Resolution and LK⁻.
 - Cut-free sequent calculus for propositional modal logics
 K, KD, KT, K4, KD4, S4.
 - ► Sequent calculus without cut or with atomic cuts for first-order logic.
- Completeness of the Maehara interpolation in:
 - ▶ LK^{at}, LK^{lit}.
 - ► LK⁻: completeness of pruned interpolants up to subsumption.
 - K, KD, KT, K4, KD4, S4 with cuts on atoms and boxed formulas.

Completeness properties of interpolation algorithms

Completeness properties of Beth's definability theorem

ヘロト 不得 ト イヨト イヨト

3

Conclusion

Initiated the study of completeness properties of interpolation algorithms:

- Incompleteness of the standard algorithms for:
 - Resolution and LK⁻.
 - Cut-free sequent calculus for propositional modal logics
 K, KD, KT, K4, KD4, S4.
 - ► Sequent calculus without cut or with atomic cuts for first-order logic.
- Completeness of the Maehara interpolation in:
 - ▶ LK^{at}, LK^{lit}.
 - ► LK⁻: completeness of pruned interpolants up to subsumption.
 - K, KD, KT, K4, KD4, S4 with cuts on atoms and boxed formulas.

Completeness properties of interpolation algorithms

Completeness properties of Beth's definability theorem

Thank you for your attention.

3