
On Craig Interpolation in SMT

Philipp Rümmer

University of Regensburg
Uppsala University

2024-04-22
CIBD Workshop, Amsterdam

Philipp Rümmer On Craig Interpolation in SMT 1 / 34



Outline

▶ Craig interpolation in verification

▶ Summary of some interpolation results for theories

▶ SMT solvers supporting Craig interpolation

▶ Beyond binary interpolation

Philipp Rümmer On Craig Interpolation in SMT 1 / 34



Motivation: inference of invariants

Generic verification problem (“safety”)

{ pre } while (*) Body { post }

Standard approach: loop rule using invariant

pre ⇒ ϕ { ϕ } Body { ϕ } ϕ⇒ post

{ pre } while (*) Body { post }

How to compute ϕ automatically?

Philipp Rümmer On Craig Interpolation in SMT 2 / 34



From intermediate assertions to invariants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

{pre} Body {ψ1} {ψ1} Body {post}

[McMillan, 2003]
Philipp Rümmer On Craig Interpolation in SMT 3 / 34



From intermediate assertions to invariants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

{pre} Body {ψ1} {ψ1} Body {post}

pre is invariant !

[ψ1 ⇒ pre]

[McMillan, 2003]
Philipp Rümmer On Craig Interpolation in SMT 3 / 34



From intermediate assertions to invariants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

{pre} Body {ψ1} {ψ1} Body {post}

pre is invariant !

[ψ1 ⇒ pre] [otherwise]

[McMillan, 2003]
Philipp Rümmer On Craig Interpolation in SMT 3 / 34



From intermediate assertions to invariants

{pre ∨ ψ1} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ2

{pre ∨ ψ1} Body {ψ2} {ψ2} Body {post}

pre is invariant !

[ψ1 ⇒ pre] [otherwise]

[McMillan, 2003]
Philipp Rümmer On Craig Interpolation in SMT 3 / 34



From intermediate assertions to invariants

{pre ∨ ψ1} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ2

{pre ∨ ψ1} Body {ψ2} {ψ2} Body {post}

pre∨ψ1 is invariant !

[ψ2 ⇒ pre∨ψ1] [otherwise]

[McMillan, 2003]
Philipp Rümmer On Craig Interpolation in SMT 3 / 34



From intermediate assertions to invariants

{pre ∨ ψ1} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ2

{pre ∨ ψ1} Body {ψ2} {ψ2} Body {post}

pre∨ψ1 is invariant !

[ψ2 ⇒ pre∨ψ1] . . .

[McMillan, 2003]
Philipp Rümmer On Craig Interpolation in SMT 3 / 34



How to compute intermediate assertions?

{ pre }

VC generation

pre (s0)
Body; → Body (s0, s1)

Body → Body (s1, s2)
{ post } → post (s2)

Philipp Rümmer On Craig Interpolation in SMT 4 / 34



How to compute intermediate assertions?

{ pre }

VC generation

pre (s0)
Body; → Body (s0, s1)

Body → Body (s1, s2)
{ post } → post (s2)

Theorem (Craig, 1957)

Suppose A → C is a valid implication. A formula I is called a Craig
interpolant if

▶ A → I and I → C are valid,

▶ every non-logical symbol of I occurs in both A and C .

Philipp Rümmer On Craig Interpolation in SMT 4 / 34



How to compute intermediate assertions?

{ pre }

VC generation

pre (s0)
Body; → Body (s0, s1)

I (s1)

A(s0, s1)

C (s1, s2)

Body → Body (s1, s2)
{ post } → post (s2)

Theorem (Craig, 1957)

Suppose A → C is a valid implication. A formula I is called a Craig
interpolant if

▶ A → I and I → C are valid,

▶ every non-logical symbol of I occurs in both A and C .

Philipp Rümmer On Craig Interpolation in SMT 4 / 34



Abstraction with interpolants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

· · ·

Philipp Rümmer On Craig Interpolation in SMT 5 / 34



Abstraction with interpolants

{pre} Body; Body {post} ?

Bounded model checking problem !

Compute intermediate assertion ψ1

· · · Interpolant extracted
from proof

⇒
Abstraction from
unnecessary details

Philipp Rümmer On Craig Interpolation in SMT 5 / 34



Theories

▶ Following [McMillan 2003], several solvers and
theorem provers add interpolation support:
▶ SAT solvers
▶ Foci → iZ3 → Z3
▶ MathSAT
▶ CLPprover
▶ CSIsat
▶ OpenSMT
▶ Princess
▶ SMTInterpol
▶ Vampire
▶ AXDInterpolator
▶ etc.

▶ “Race” to find interpolation procedures for
relevant theories.

Standard SMT theories

▶ EUF

▶ Arrays

▶ LRA

▶ LIA

▶ NRA

▶ NIA

▶ Bit-vectors

▶ Floats

▶ ADTs

▶ Strings

▶ (+ combinations)

Philipp Rümmer On Craig Interpolation in SMT 6 / 34



Towards Satisfiability Modulo Theories paradigm (SMT)

▶ Satisfiability Modulo Theories (SMT) solvers are today the standard backends in
verification

▶ Maintained solvers supporting Craig interpolation:

Solver · · ·

MathSAT5

OpenSMT2

Princess

SMTInterpol

cvc5

Vampire

Z3

▶ (any tools missing?)

Philipp Rümmer On Craig Interpolation in SMT 7 / 34



Reverse interpolants

▶ It is common in verification to use the following variant of interpolation:

Definition

Suppose A ∧ B is unsatisfiable. A reverse interpolant is a formula I such that
▶ A → I and B → ¬I are valid,
▶ every non-logical symbol of I occurs in both A and B .

Lemma

In classical logic, reverse interpolants and ordinary interpolants are interchangeable:

I is reverse interpolant for A ∧ B ⇐⇒ I is interpolant for A → ¬B

Philipp Rümmer On Craig Interpolation in SMT 8 / 34



Interpolation in theories

Theorem (Kovacs, Voronkov, 2009)

Suppose T is a theory and A ∧ B a T -unsatisfiable conjunction in first-order logic:

A ∧ B |=T false

Then there is a formula I such that:

▶ A |=T I

▶ B |= ¬I

▶ every non-logical symbol . . .

▶ Problem: even if A ∧ B is quantifier-free, the I might contain quantifiers.

▶ Often a problem in verification.

Philipp Rümmer On Craig Interpolation in SMT 9 / 34



Plain quantifier-free theory interpolation

Definition (Bruttomesso, Ghilardi, Ranise, 2014)

A theory T admits plain quantifier-free interpolation if for every quantifier-free
T -unsatisfiable conjunction A ∧ B (with arbitrary free variables, but otherwise only
containing T -symbols) there is a quantifier-free formula I with:

▶ A |=T I

▶ B |=T ¬I

▶ every variable in I occurs in both A and B .

Philipp Rümmer On Craig Interpolation in SMT 10 / 34



General quantifier-free theory interpolation

Definition (Bruttomesso, Ghilardi, Ranise, 2014)

A theory T admits general quantifier-free interpolation if for every closed
quantifier-free T -unsatisfiable conjunction A ∧ B (with symbols from T , but also
including other functions or predicates) there is a quantifier-free (reverse) interpolant I .

▶ Plain and general QFI can be characterized in terms of (sub-)amalgamation.

▶ The second property is equivalent to the notion of equality interpolation, and
important for theory combination.

Philipp Rümmer On Craig Interpolation in SMT 11 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI

gen. QFI

Philipp Rümmer On Craig Interpolation in SMT 12 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !

gen. QFI ! !

▶ Kenneth L. McMillan: An interpolating theorem prover. Theor. Comput. Sci. 345(1): 101-121
(2005)

Philipp Rümmer On Craig Interpolation in SMT 12 / 34



Interpolating LRA

LRA proof rules

s ≥ 0 t ≥ 0
αs + βt ≥ 0 (for α, β ≥ 0)

α ≥ 0
□ (for α < 0)

Philipp Rümmer On Craig Interpolation in SMT 13 / 34



Interpolating LRA (2)

Interpolating LRA proof rules

▶ Annotate every inequality with a partial interpolant:

s ≥ 0 is a formula from A

s ≥ 0 [s]

s ≥ 0 is a formula from B

s ≥ 0 [0]

▶ Propagate those partial interpolants:

s ≥ 0 [s ′] t ≥ 0 [t ′]

αs + βt ≥ 0 [αs ′ + βt ′] (for α, β ≥ 0)

α ≥ 0 [s ′]

□ [s ′ ≥ 0] (for α < 0)

▶ The partial interpolant annotating □ is an interpolant for A ∧ B .

Philipp Rümmer On Craig Interpolation in SMT 14 / 34



Interpolating LRA (2)

Interpolating LRA proof rules

▶ Annotate every inequality with a partial interpolant:

s ≥ 0 is a formula from A

s ≥ 0 [s]

s ≥ 0 is a formula from B

s ≥ 0 [0]

▶ Propagate those partial interpolants:

s ≥ 0 [s ′] t ≥ 0 [t ′]

αs + βt ≥ 0 [αs ′ + βt ′] (for α, β ≥ 0)

α ≥ 0 [s ′]

□ [s ′ ≥ 0] (for α < 0)

▶ The partial interpolant annotating □ is an interpolant for A ∧ B .

▶ Similar rules can be defined for EUF.

Philipp Rümmer On Craig Interpolation in SMT 14 / 34



Interpolation paradigms

1. Proof-based

1.1 Bottom-up: propagate partial interpolants (“resolution-style”)

Philipp Rümmer On Craig Interpolation in SMT 15 / 34



Interpolation paradigms

1. Proof-based

1.1 Bottom-up: propagate partial interpolants (“resolution-style”)

2. Graph-based: summarize edges in an e-graph

▶ Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, Cesare Tinelli: Ground interpolation for
the theory of equality. Log. Methods Comput. Sci. 8(1) (2012)

Philipp Rümmer On Craig Interpolation in SMT 15 / 34



Interpolation paradigms

1. Proof-based

1.1 Bottom-up: propagate partial interpolants (“resolution-style”)

2. Graph-based: summarize edges in an e-graph

3. Quantifier elimination

▶ Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, Cesare Tinelli: Ground interpolation for
the theory of equality. Log. Methods Comput. Sci. 8(1) (2012)

Philipp Rümmer On Craig Interpolation in SMT 15 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !

gen. QFI ! !

Philipp Rümmer On Craig Interpolation in SMT 16 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! ! !1 ! ! ! !

gen. QFI ! !

▶ Every theory that admits quantifier elimination also has plain quantifier-free
interpolation.

1Needs a divisibility operator |.
Philipp Rümmer On Craig Interpolation in SMT 16 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! ! !1 ! ! ! !

gen. QFI ! !

▶ Every theory that admits quantifier elimination also has plain quantifier-free
interpolation.

▶ Interpolants computed using quantifier elimination tend to be less useful in
verification: no “abstraction from unnecessary details”

1Needs a divisibility operator |.
Philipp Rümmer On Craig Interpolation in SMT 16 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !2 ! !1 ! ! ! !

gen. QFI ! !2 !

▶ Every theory that admits quantifier elimination also has plain quantifier-free
interpolation.

▶ Interpolants computed using quantifier elimination tend to be less useful in
verification: no “abstraction from unnecessary details”

1Needs a divisibility operator |.
2Needs a diff function, see Silvio’s talk.

Philipp Rümmer On Craig Interpolation in SMT 16 / 34



Proof-based LIA Interpolation

LIA proof rules

LRA proof rules + some combination of:

▶ Branch & bound:
x = α

x ≤ ⌊α⌋ x ≥ ⌈α⌉

▶ Cuts: ∑
i
αixi + β ≥ 0

∑
i

αi

γ
xi + ⌊β

γ
⌋ ≥ 0 (γ > 0 divides all αi )

▶ Strengthening (e.g., Omega test):

t ≥ n

t = n t ≥ n + 1

Philipp Rümmer On Craig Interpolation in SMT 17 / 34



Proof-based LIA Interpolation

LIA proof rules

LRA proof rules + some combination of:

▶ Branch & bound:
x = α

x ≤ ⌊α⌋ x ≥ ⌈α⌉

▶ Cuts: ∑
i
αixi + β ≥ 0

∑
i

αi

γ
xi + ⌊β

γ
⌋ ≥ 0 (γ > 0 divides all αi )

▶ Strengthening (e.g., Omega test):

t ≥ n

t = n t ≥ n + 1

▶ Splitting requires a further paradigm in interpolation . . .

Philipp Rümmer On Craig Interpolation in SMT 17 / 34



Interpolation paradigms

1. Proof-based

1.1 Bottom-up: propagate partial interpolants (“resolution-style”)
1.2 Top-down: recursive computation of interpolants

2. Graph-based: summarize edges in an e-graph

3. Quantifier elimination

Philipp Rümmer On Craig Interpolation in SMT 18 / 34



Interpolation paradigms

1. Proof-based

1.1 Bottom-up: propagate partial interpolants (“resolution-style”)
1.2 Top-down: recursive computation of interpolants

2. Graph-based: summarize edges in an e-graph

3. Quantifier elimination

Computation of interpolants with splitting

A1 ∨ A2,B ▷ I1 ∨ I2

A1,B ▷ I1 A2,B ▷ I2

A,B1 ∨ B2 ▷ I1 ∧ I2

A,B1 ▷ I1 A,B2 ▷ I2

Philipp Rümmer On Craig Interpolation in SMT 18 / 34



Proof-based LIA Interpolation

LIA proof rules

▶ Branch & bound:
x = α

x ≤ ⌊α⌋ x ≥ ⌈α⌉

▶ Cuts: ∑
i
αixi + β ≥ 0

∑
i

αi

γ
xi + ⌊β

γ
⌋ ≥ 0 (γ > 0 divides all αi )

▶ Strengthening (e.g., Omega test):

t ≥ n

t = n t ≥ n + 1

Philipp Rümmer On Craig Interpolation in SMT 19 / 34



Proof-based LIA Interpolation

LIA proof rules

▶ Branch & bound: !
x = α

x ≤ ⌊α⌋ x ≥ ⌈α⌉

▶ Cuts: ∑
i
αixi + β ≥ 0

∑
i

αi

γ
xi + ⌊β

γ
⌋ ≥ 0 (γ > 0 divides all αi )

▶ Strengthening (e.g., Omega test):

t ≥ n

t = n t ≥ n + 1

Philipp Rümmer On Craig Interpolation in SMT 19 / 34



Proof-based LIA Interpolation

LIA proof rules

▶ Branch & bound: !
x = α

x ≤ ⌊α⌋ x ≥ ⌈α⌉

▶ Cuts: ! ∑
i
αixi + β ≥ 0

∑
i

αi

γ
xi + ⌊β

γ
⌋ ≥ 0 (γ > 0 divides all αi )

▶ Strengthening (e.g., Omega test): !

t ≥ n

t = n t ≥ n + 1

▶ For poly-size interpolants: either integer division ÷ or bounded quantifiers needed.

Philipp Rümmer On Craig Interpolation in SMT 19 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !2 ! !1 ! ! ! !

gen. QFI ! !2 !

▶ Alberto Griggio, Thi Thieu Hoa Le, Roberto Sebastiani: Efficient Interpolant Generation in
Satisfiability Modulo Linear Integer Arithmetic. TACAS 2011: 143-157

▶ Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: An Interpolating Sequent Calculus for
Quantifier-Free Presburger Arithmetic. J. Autom. Reason. 47(4): 341-367 (2011)

1Needs a divisibility operator | integer division ÷ or bounded quantifiers.
2Needs a diff function.

Philipp Rümmer On Craig Interpolation in SMT 20 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !2 ! !1 ! ! ! !

gen. QFI ! !2 ! !1

▶ Alberto Griggio, Thi Thieu Hoa Le, Roberto Sebastiani: Efficient Interpolant Generation in
Satisfiability Modulo Linear Integer Arithmetic. TACAS 2011: 143-157

▶ Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: An Interpolating Sequent Calculus for
Quantifier-Free Presburger Arithmetic. J. Autom. Reason. 47(4): 341-367 (2011)

▶ Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: Beyond Quantifier-Free Interpolation in
Extensions of Presburger Arithmetic. VMCAI 2011: 88-102

1Needs a divisibility operator | integer division ÷ or bounded quantifiers.
2Needs a diff function.

Philipp Rümmer On Craig Interpolation in SMT 20 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !2 ! !1 ! %3 ! ! !

gen. QFI ! !2 ! !1

▶ Alberto Griggio, Thi Thieu Hoa Le, Roberto Sebastiani: Efficient Interpolant Generation in
Satisfiability Modulo Linear Integer Arithmetic. TACAS 2011: 143-157

▶ Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: An Interpolating Sequent Calculus for
Quantifier-Free Presburger Arithmetic. J. Autom. Reason. 47(4): 341-367 (2011)

▶ Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: Beyond Quantifier-Free Interpolation in
Extensions of Presburger Arithmetic. VMCAI 2011: 88-102

▶ Peter Backeman, PR, Aleksandar Zeljic: Bit-Vector Interpolation and Quantifier Elimination by
Lazy Reduction. FMCAD 2018: 1-10

1Needs a divisibility operator | integer division ÷ or bounded quantifiers.
2Needs a diff function.
3Integer polynomials.

Philipp Rümmer On Craig Interpolation in SMT 20 / 34



Interpolation paradigms

1. Proof-based

1.1 Bottom-up: propagate partial interpolants (“resolution-style”)
1.2 Top-down: recursive computation of interpolants

2. Graph-based: summarize edges in an e-graph

3. Quantifier elimination

4. Reduction-based: by mapping interpolation problem to another theory

▶ Deepak Kapur, Rupak Majumdar, Calogero G. Zarba: Interpolation for data structures.
SIGSOFT FSE 2006: 105-116

Philipp Rümmer On Craig Interpolation in SMT 21 / 34



Fixed-length bit-vectors

▶ Formalization of machine arithmetic, very widely used in verification

▶ Domains x ∈ ❇n, often for n = 32 or n = 64

▶ Different classes of operations:
▶ Arithmetic: bvadd, bvmul, . . .
▶ Sequence: concat, extract, shift, . . .
▶ Bit-wise: bvand, bvor, . . .

▶ Though finite, often resulting in very hard constraints

Philipp Rümmer On Craig Interpolation in SMT 22 / 34



Bit-vector interpolation by reduction

Approaches

▶ Approach 1: reduction to propositional logic → “bit-blasting”

▶ Approach 2: reduction to LIA/NIA

▶ Approach 3: lazy reduction to LIA/NIA

Philipp Rümmer On Craig Interpolation in SMT 23 / 34



Bit-vector interpolation by reduction

Approaches

▶ Approach 1: reduction to propositional logic → “bit-blasting”
▶ Good for formulas with many bit-wise operations
▶ Low-level propositional interpolants, less useful for software verification

▶ Approach 2: reduction to LIA/NIA

▶ Approach 3: lazy reduction to LIA/NIA

Philipp Rümmer On Craig Interpolation in SMT 23 / 34



Bit-vector interpolation by reduction

Approaches

▶ Approach 1: reduction to propositional logic → “bit-blasting”
▶ Good for formulas with many bit-wise operations
▶ Low-level propositional interpolants, less useful for software verification

▶ Approach 2: reduction to LIA/NIA
▶ Good for formulas with mostly linear, arithmetic operations
▶ Due to overflows, often leads to hard LIA formulas and convoluted interpolants

▶ Approach 3: lazy reduction to LIA/NIA

▶ A. Griggio, “Effective word-level interpolation for software verification,” FMCAD 2011

Philipp Rümmer On Craig Interpolation in SMT 23 / 34



Bit-vector interpolation by reduction

Approaches

▶ Approach 1: reduction to propositional logic → “bit-blasting”
▶ Good for formulas with many bit-wise operations
▶ Low-level propositional interpolants, less useful for software verification

▶ Approach 2: reduction to LIA/NIA
▶ Good for formulas with mostly linear, arithmetic operations
▶ Due to overflows, often leads to hard LIA formulas and convoluted interpolants

▶ Approach 3: lazy reduction to LIA/NIA
▶ Good for formulas with mostly arithmetic operations; much “nicer” interpolants
▶ Still difficult to support bit-wise operations efficiently

▶ A. Griggio, “Effective word-level interpolation for software verification,” FMCAD 2011

▶ Peter Backeman, PR, Aleksandar Zeljic: Bit-Vector Interpolation and Quantifier Elimination by
Lazy Reduction. FMCAD 2018: 1-10

Philipp Rümmer On Craig Interpolation in SMT 23 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !2 ! !1 ! %3 ! ! !

gen. QFI ! !2 ! !1

1Needs integer division ÷ or bounded quantifiers.
2Needs a diff function.
3Integer polynomials.

Philipp Rümmer On Craig Interpolation in SMT 24 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !2 ! !1 ! %3 ! ! !

gen. QFI ! !2 ! !1 !

▶ Hossein Hojjat, PR: Deciding and Interpolating Algebraic Data Types by Reduction. SYNASC
2017: 145-152

1Needs integer division ÷ or bounded quantifiers.
2Needs a diff function.
3Integer polynomials.

Philipp Rümmer On Craig Interpolation in SMT 24 / 34



The Big Picture

EUF Arrays LRA LIA NRA NIA BV Floats ADT Strings

plain QFI ! !2 ! !1 ! %3 ! ! !

gen. QFI ! !2 ! !1 ! ! !

▶ Hossein Hojjat, PR: Deciding and Interpolating Algebraic Data Types by Reduction. SYNASC
2017: 145-152

1Needs integer division ÷ or bounded quantifiers.
2Needs a diff function.
3Integer polynomials.

Philipp Rümmer On Craig Interpolation in SMT 24 / 34



Interpolation paradigms

1. Proof-based

1.1 Bottom-up: propagate partial interpolants (“resolution-style”)
1.2 Top-down: recursive computation of interpolants

2. Graph-based: summarize edges in an e-graph

3. Quantifier elimination

4. Reduction-based: by mapping interpolation problem to another theory

5. Constraint-based: systematic search for interpolants in some language
▶ Syntax-guided synthesis
▶ Linear arithmetic constraint solving

Philipp Rümmer On Craig Interpolation in SMT 25 / 34



Interpolation support in SMT solvers (apologies for errors!)

EUF Arrays LRA LIA NRA NIA BV Floats ADT

plain QFI ! ! ! ! ! % ! ! !

gen. QFI ! ! ! ! ! ! !

MathSAT5

OpenSMT2

Princess

SMTInterpol

cvc5

Vampire

Z3

Philipp Rümmer On Craig Interpolation in SMT 26 / 34



Interpolation support in SMT solvers (apologies for errors!)

EUF Arrays LRA LIA NRA NIA BV Floats ADT

plain QFI ! ! ! ! ! % ! ! !

gen. QFI ! ! ! ! ! ! !

MathSAT5 ! ? ! ! ! ?

OpenSMT2

Princess

SMTInterpol

cvc5

Vampire

Z3

Philipp Rümmer On Craig Interpolation in SMT 26 / 34



Interpolation support in SMT solvers (apologies for errors!)

EUF Arrays LRA LIA NRA NIA BV Floats ADT

plain QFI ! ! ! ! ! % ! ! !

gen. QFI ! ! ! ! ! ! !

MathSAT5 ! ? ! ! ! ?

OpenSMT2 ! ! !

Princess

SMTInterpol

cvc5

Vampire

Z3

Philipp Rümmer On Craig Interpolation in SMT 26 / 34



Interpolation support in SMT solvers (apologies for errors!)

EUF Arrays LRA LIA NRA NIA BV Floats ADT

plain QFI ! ! ! ! ! % ! ! !

gen. QFI ! ! ! ! ! ! !

MathSAT5 ! ? ! ! ! ?

OpenSMT2 ! ! !

Princess ! ! ! ! ! !

SMTInterpol

cvc5

Vampire

Z3

Philipp Rümmer On Craig Interpolation in SMT 26 / 34



Interpolation support in SMT solvers (apologies for errors!)

EUF Arrays LRA LIA NRA NIA BV Floats ADT

plain QFI ! ! ! ! ! % ! ! !

gen. QFI ! ! ! ! ! ! !

MathSAT5 ! ? ! ! ! ?

OpenSMT2 ! ! !

Princess ! ! ! ! ! !

SMTInterpol ! ! ! !

cvc5

Vampire

Z3

Philipp Rümmer On Craig Interpolation in SMT 26 / 34



Interpolation support in SMT solvers (apologies for errors!)

EUF Arrays LRA LIA NRA NIA BV Floats ADT

plain QFI ! ! ! ! ! % ! ! !

gen. QFI ! ! ! ! ! ! !

MathSAT5 ! ? ! ! ! ?

OpenSMT2 ! ! !

Princess ! ! ! ! ! !

SMTInterpol ! ! ! !

cvc5 !1 ! ! ! ! ! ! ! !

Vampire

Z3

1Via syntax-guided synthesis.
Philipp Rümmer On Craig Interpolation in SMT 26 / 34



Interpolation support in SMT solvers (apologies for errors!)

EUF Arrays LRA LIA NRA NIA BV Floats ADT

plain QFI ! ! ! ! ! % ! ! !

gen. QFI ! ! ! ! ! ! !

MathSAT5 ! ? ! ! ! ?

OpenSMT2 ! ! !

Princess ! ! ! ! ! !

SMTInterpol ! ! ! !

cvc5 !1 ! ! ! ! ! ! ! !

Vampire ! !2 ! !

Z3

1Via syntax-guided synthesis.
2Focussing on first-order interpolants.

Philipp Rümmer On Craig Interpolation in SMT 26 / 34



Interpolation support in SMT solvers (apologies for errors!)

EUF Arrays LRA LIA NRA NIA BV Floats ADT

plain QFI ! ! ! ! ! % ! ! !

gen. QFI ! ! ! ! ! ! !

MathSAT5 ! ? ! ! ! ?

OpenSMT2 ! ! !

Princess ! ! ! ! ! !

SMTInterpol ! ! ! !

cvc5 !1 ! ! ! ! ! ! ! !

Vampire ! !2 ! !

Z3 !3 ! ! ! ! ! !

1Via syntax-guided synthesis.
2Focussing on first-order interpolants.
3Via its constrained Horn clause engine.

Philipp Rümmer On Craig Interpolation in SMT 26 / 34



Beyond binary interpolation

Extended versions of interpolation

▶ Sequence interpolants

▶ Tree interpolants

▶ Disjunctive interpolants

▶ DAG interpolants

▶ All those notions can be reduced to binary/standard interpolation.

▶ But they are quite widely used: most solvers support sequence and/or tree
interpolants.

Philipp Rümmer On Craig Interpolation in SMT 27 / 34



Example: tree interpolation

Tree interpolant

Suppose T = (V ,E ) is a finite directed tree, and
ϕ : V → For a labeling function such that

∧
v∈V

ϕ(v) is
unsatisfiable.

I : V → For is a tree interpolant if

▶ I (root) = false

▶ For all v ∈ V :
ϕ(v) ∧

∧

(v ,w)∈E

I (w) |= I (v)

▶ Non-logical symbols in I (v) occur both in the
sub-tree underneath v and in the rest of the tree.

v1

v2 v3 v4

φ(v1) ∧
(

I(v2) ∧ I(v3) ∧ I(v4)
)

|= I(v1)

Philipp Rümmer On Craig Interpolation in SMT 28 / 34



Craig interpolation as recursion-free Horn solving

Observation

▶ Let A,B be formulas with common variables x̄ .

▶ Then:

I (x̄) is a reverse interpolant of A ∧ B

⇔

Formulas A → I (x̄) and B ∧ I (x̄) → false are valid

▶ A → I (x̄), B ∧ I (x̄) → false can be seen as constrained
Horn clauses over a relation symbol I .

▶ Correspondence between (extended) Craig interpolants and
solution sets of recursion-free Horn clauses

William Craig

Alfred Horn
Philipp Rümmer On Craig Interpolation in SMT 29 / 34



Taxonomy of Recursion-free Horn Clauses & Interpolation

co
-N

P
co
-N

E
X
P
T
IM

E

Recursion-free Horn clausesCraig interpolation

Linear tree-like

Body-disjoint

General recursion-free

Tree-like

Head-disjoint

Linear

Inductive interpolant sequences

Binary interpolation

Tree interpolation

Disjunctive interpolation

(Restricted) DAG interpolation

Philipp Rümmer On Craig Interpolation in SMT 30 / 34



Recursion-Free Horn Clause Fragments

Linear: the body of each clause
contains at most one relation
symbol.

1)C1 ∧ R2(x̄) → R1(x̄)
2)C2 ∧ R4(x̄) → R1(x̄)
3)C3 ∧ R3(x̄) → R1(x̄)
4)C4 ∧ R4(x̄) → R2(x̄)
5)C5 ∧ R4(x̄) → R3(x̄)

(1) (3)

(2)

(4) (5)

R1

R4

R2 R3

Body-disjoint: each relation symbol
occurs at most once in body of a
clause.

1)C1 ∧ R2(x̄) ∧ R3(x̄) → R1(x̄)
2)C2 ∧ R4(x̄) ∧ R5(x̄) → R1(x̄)
3)C3 ∧ R6(x̄) → R3(x̄)

(2)(1)

(3)

R1

R2

R3

R4 R5

R6

Tree-like: body-disjoint &
head-disjoint: each relation symbol
occurs at most once in head of a
clause.

1)C1 ∧ R2(x̄) ∧ R3(x̄) → R1(x̄)
2)C2 ∧ R4(x̄) ∧ R5(x̄) → R2(x̄)
3)C3 ∧ R6(x̄) → R3(x̄)

(1)

(2)

(3)

R1

R2 R3

R4 R5 R6

Philipp Rümmer On Craig Interpolation in SMT 31 / 34



Horn solving in verification

▶ Constrained Horn clauses are considered a “unifying framework” in software
model checking

▶ Horn solvers often internally use Craig interpolation

▶ Vice versa, Horn solvers are able to compute Craig interpolants

▶ PR, Hossein Hojjat, Viktor Kuncak: The Relationship between Craig Interpolation and
Recursion-Free Horn Clauses. CoRR abs/1302.4187 (2013)

Philipp Rümmer On Craig Interpolation in SMT 32 / 34



Conclusions

▶ Consider the talk as the starting point of a systematic survey

▶ Several dimensions remain to be explored:
▶ Support for theory combination
▶ Interpolation vs. uniform interpolation
▶ Support for quantifiers
▶ Complexity

▶ Comments, questions?

Philipp Rümmer On Craig Interpolation in SMT 33 / 34



Challenges

▶ Interpolation for some of the theories:
▶ Bit-vectors
▶ Floating-point numbers
▶ Strings, sequences

▶ What is a good interpolant? How to search for interpolants?

Philipp Rümmer On Craig Interpolation in SMT 34 / 34


	Overview

