On Craig Interpolation in SMT

Philipp Rümmer

University of Regensburg Uppsala University

2024-04-22 CIBD Workshop, Amsterdam

- Craig interpolation in verification
- Summary of some interpolation results for theories
- SMT solvers supporting Craig interpolation
- Beyond binary interpolation

Motivation: inference of invariants

Generic verification problem ("safety")

{ pre } while (*) Body { post }

Standard approach: loop rule using invariant

$$\frac{\texttt{pre} \Rightarrow \phi \quad \{ \phi \} \text{ Body } \{ \phi \} \quad \phi \Rightarrow \texttt{post}}{\{ \texttt{pre} \} \text{ while (*) Body } \{ \texttt{post} \}}$$

How to compute ϕ automatically?

Philipp Rümmer

On Craig Interpolation in SMT

From intermediate assertions to invariants

[McMillan, 2003]

From intermediate assertions to invariants

[McMillan, 2003]

Philipp Rümmer

On Craig Interpolation in SMT

Philipp Rümmer

On Craig Interpolation in SMT

From intermediate assertions to invariants {pre $\lor \psi_1$ } Body; Body {post} ? Bounded model checking problem 🗸 Compute intermediate assertion ψ_2 $\{ \text{pre} \lor \psi_1 \} \text{ Body } \{ \psi_2 \}$ $\{\psi_2\}$ Body $\{\texttt{post}\}$ $[\psi_1 \Rightarrow \texttt{pre}]$ [otherwise] pre is invariant

Philipp Rümmer

On Craig Interpolation in SMT

[McMillan, 2003]

From intermediate assertions to invariants

From intermediate assertions to invariants

How to compute intermediate assertions?

How to compute intermediate assertions?

Theorem (Craig, 1957)

Suppose $A \rightarrow C$ is a valid implication. A formula I is called a Craig interpolant if

- \blacktriangleright $A \rightarrow I$ and $I \rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

How to compute intermediate assertions?

Theorem (Craig, 1957)

Suppose $A \rightarrow C$ is a valid implication. A formula I is called a Craig interpolant if

- \blacktriangleright $A \rightarrow I$ and $I \rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

Abstraction with interpolants

Abstraction with interpolants

Theories

Following [McMillan 2003], several solvers and theorem provers add interpolation support:

- SAT solvers
- $\blacktriangleright \ \mathsf{Foci} \to \mathsf{iZ3} \to \mathsf{Z3}$
- MathSAT
- CLPprover
- CSIsat
- OpenSMT
- Princess
- SMTInterpol
- Vampire
- AXDInterpolator
- etc.
- "Race" to find interpolation procedures for relevant theories.

Standard SMT theories

(+ combinations)

Towards Satisfiability Modulo Theories paradigm (SMT)

- Satisfiability Modulo Theories (SMT) solvers are today the standard backends in verification
- Maintained solvers supporting Craig interpolation:

Solver	
MathSAT5	
OpenSMT2	
Princess	
SMTInterpol	
cvc5	
Vampire	
Z3	

Philipp Rümmer

Reverse interpolants

It is common in verification to use the following variant of interpolation:

Lemma

In classical logic, reverse interpolants and ordinary interpolants are interchangeable: I is reverse interpolant for $A \land B \iff I$ is interpolant for $A \rightarrow \neg B$

Interpolation in theories

Theorem (Kovacs, Voronkov, 2009)

Suppose T is a theory and $A \wedge B$ a T-unsatisfiable conjunction in first-order logic:

 $A \land B \models_T false$

Then there is a formula I such that:

► A ⊨_T I

► $B \models \neg I$

every non-logical symbol . . .

▶ *Problem:* even if $A \land B$ is quantifier-free, the *I* might contain quantifiers.

Often a problem in verification.

Plain quantifier-free theory interpolation

Definition (Bruttomesso, Ghilardi, Ranise, 2014)

A theory T admits *plain quantifier-free interpolation* if for every quantifier-free T-unsatisfiable conjunction $A \wedge B$ (with arbitrary free variables, but otherwise only containing T-symbols) there is a quantifier-free formula I with:

every variable in I occurs in both A and B.

General quantifier-free theory interpolation

Definition (Bruttomesso, Ghilardi, Ranise, 2014)

A theory T admits general quantifier-free interpolation if for every closed quantifier-free T-unsatisfiable conjunction $A \wedge B$ (with symbols from T, but also including other functions or predicates) there is a quantifier-free (reverse) interpolant I.

- ▶ Plain and general QFI can be characterized in terms of (sub-)amalgamation.
- The second property is equivalent to the notion of equality interpolation, and important for theory combination.

	EUF	Arrays	LRA	LIA	NRA	NIA	ВV	Floats	ADT	Strings
plain QFI										
gen. QFI										

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI	\checkmark		\checkmark							
gen. QFI	\checkmark		\checkmark							

Kenneth L. McMillan: An interpolating theorem prover. Theor. Comput. Sci. 345(1): 101-121 (2005)

Interpolating LRA

LRA proof rules

$$\frac{s \ge 0 \quad t \ge 0}{\alpha s + \beta t \ge 0} \quad \text{(for } \alpha, \beta \ge 0\text{)} \qquad \qquad \frac{\alpha \ge 0}{\Box} \quad \text{(for } \alpha < 0\text{)}$$

Interpolating LRA (2)

Interpolating LRA proof rules

> Annotate every inequality with a *partial interpolant*:

$s \ge 0$ is a formula from A	$s \ge 0$ is a formula from B
$s \geq 0 \; [s]$	$s \geq 0$ [0]

Propagate those partial interpolants:

$$\frac{s \ge 0 \ [s']}{\alpha s + \beta t \ge 0 \ [\alpha s' + \beta t']} \quad \text{(for } \alpha, \beta \ge 0\text{)} \qquad \qquad \frac{\alpha \ge 0 \ [s']}{\Box \ [s' \ge 0]} \quad \text{(for } \alpha < 0\text{)}$$

• The partial interpolant annotating \Box is an interpolant for $A \land B$.

Interpolating LRA (2)

Interpolating LRA proof rules

> Annotate every inequality with a *partial interpolant*:

$s \ge 0$ is a formula from A	$s \ge 0$ is a formula from B
$s \geq 0 \; [s]$	$s \geq 0$ [0]

Propagate those partial interpolants:

$$\begin{array}{ccc} \underline{s \geq 0 \ [s']} & \underline{t \geq 0 \ [t']} \\ \overline{\alpha s + \beta t \geq 0 \ [\alpha s' + \beta t']} & (\text{for } \alpha, \beta \geq 0) \end{array} & \begin{array}{c} \underline{\alpha \geq 0 \ [s']} \\ \Box \ [s' \geq 0] & (\text{for } \alpha < 0) \end{array}$$

• The partial interpolant annotating \Box is an interpolant for $A \land B$.

Similar rules can be defined for EUF.

- 1. Proof-based
 - 1.1 Bottom-up: propagate partial interpolants ("resolution-style")

- 1. Proof-based
 - 1.1 Bottom-up: propagate partial interpolants ("resolution-style")
- 2. Graph-based: summarize edges in an e-graph

Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, Cesare Tinelli: Ground interpolation for the theory of equality. Log. Methods Comput. Sci. 8(1) (2012)

- 1. Proof-based
 - 1.1 Bottom-up: propagate partial interpolants ("resolution-style")
- 2. Graph-based: summarize edges in an e-graph
- 3. Quantifier elimination

Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, Cesare Tinelli: Ground interpolation for the theory of equality. Log. Methods Comput. Sci. 8(1) (2012)

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI	\checkmark		\checkmark							
gen. QFI	\checkmark		\checkmark							

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI	\checkmark		\checkmark	√ 1	\checkmark		\checkmark	\checkmark	\checkmark	
gen. QFI	\checkmark		\checkmark							

Every theory that admits quantifier elimination also has plain quantifier-free interpolation.

¹Needs a divisibility operator |.

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI	\checkmark		\checkmark	√ 1	\checkmark		\checkmark	\checkmark	\checkmark	
gen. QFI	\checkmark		\checkmark							

- Every theory that admits quantifier elimination also has plain quantifier-free interpolation.
- Interpolants computed using quantifier elimination tend to be less useful in verification: no "abstraction from unnecessary details"

¹Needs a divisibility operator |.

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI	\checkmark	√ 2	\checkmark	√ 1	\checkmark		 Image: A second s	\checkmark	\checkmark	
gen. QFI	\checkmark	√ ²	\checkmark							

- Every theory that admits quantifier elimination also has plain quantifier-free interpolation.
- Interpolants computed using quantifier elimination tend to be less useful in verification: no "abstraction from unnecessary details"

¹Needs a divisibility operator |.

²Needs a *diff* function, see Silvio's talk.

Proof-based LIA Interpolation

LIA proof rules

LRA proof rules + some combination of:

Branch & bound:

$$\frac{x = \alpha}{x \le \lfloor \alpha \rfloor \quad x \ge \lceil \alpha \rceil}$$

Cuts:

$$\frac{\sum_{i} \alpha_{i} x_{i} + \beta \geq 0}{\sum_{i} \frac{\alpha_{i}}{\gamma} x_{i} + \lfloor \frac{\beta}{\gamma} \rfloor \geq 0} \quad (\gamma > 0 \text{ divides all } \alpha_{i})$$

Strengthening (e.g., Omega test):

$$\frac{t \ge n}{t = n \quad t \ge n+1}$$

Proof-based LIA Interpolation

LIA proof rules

LRA proof rules + some combination of:

Branch & bound:

$$\frac{x = \alpha}{x \le \lfloor \alpha \rfloor \quad x \ge \lceil \alpha \rceil}$$

Cuts:

$$\frac{\sum_{i} \alpha_{i} x_{i} + \beta \geq 0}{\sum_{i} \frac{\alpha_{i}}{\gamma} x_{i} + \lfloor \frac{\beta}{\gamma} \rfloor \geq 0} \quad (\gamma > 0 \text{ divides all } \alpha_{i})$$

Strengthening (e.g., Omega test):

$$\frac{t \ge n}{t = n \quad t \ge n+1}$$

Splitting requires a further paradigm in interpolation

Philipp Rümmer

On Craig Interpolation in SMT

- 1. Proof-based
 - 1.1 Bottom-up: propagate partial interpolants ("resolution-style")
 - 1.2 Top-down: recursive computation of interpolants
- 2. Graph-based: summarize edges in an e-graph
- 3. Quantifier elimination

- 1. Proof-based
 - 1.1 Bottom-up: propagate partial interpolants ("resolution-style")
 - **1.2 Top-down: recursive computation of interpolants**
- 2. Graph-based: summarize edges in an e-graph
- 3. Quantifier elimination

Computation of interpolants with splitting

$$\frac{A_1 \lor A_2, B \ \triangleright \ \textit{I}_1 \lor \textit{I}_2}{A_1, B \ \triangleright \ \textit{I}_1 \ A_2, B \ \triangleright \ \textit{I}_2}$$

$$\frac{A, B_1 \vee B_2 \ \triangleright I_1 \wedge I_2}{A, B_1 \ \triangleright I_1 \ A, B_2 \ \triangleright I_2}$$

Proof-based LIA Interpolation

LIA proof rules

Cuts:

Branch & bound:

 $\begin{aligned} \frac{x = \alpha}{x \le \lfloor \alpha \rfloor \quad x \ge \lceil \alpha \rceil} \\ \frac{\sum_{i} \alpha_{i} x_{i} + \beta \ge 0}{\sum_{i} \frac{\alpha_{i}}{\gamma} x_{i} + \lfloor \frac{\beta}{\gamma} \rfloor \ge 0} \quad (\gamma > 0 \text{ divides all } \alpha_{i}) \end{aligned}$

Strengthening (e.g., Omega test):

$$\frac{t \ge n}{t = n \quad t \ge n+1}$$

Proof-based LIA Interpolation

LIA proof rules

Cuts:

▶ Branch & bound[.] ✓ $\frac{x = \alpha}{x \le |\alpha| \quad x \ge \lceil \alpha \rceil}$ $\frac{\sum_{i} \alpha_{i} x_{i} + \beta \geq 0}{\sum_{i} \frac{\alpha_{i}}{\gamma} x_{i} + \lfloor \frac{\beta}{\gamma} \rfloor \geq 0} \quad (\gamma > 0 \text{ divides all } \alpha_{i})$ Strengthening (e.g., Omega test):

$$\frac{t \ge n}{t = n \quad t \ge n+1}$$

Proof-based LIA Interpolation

LIA proof rules

Branch & bound: $\frac{x = \alpha}{x \le |\alpha| \quad x \ge \lceil \alpha \rceil}$ ► Cuts: ✓ $\sum_{i} \alpha_i x_i + \beta \geq 0$ $\overline{\sum_{i} \frac{\alpha_{i}}{\gamma} x_{i} + \lfloor \frac{\beta}{\gamma} \rfloor} \ge 0 \quad (\gamma > 0 \text{ divides all } \alpha_{i})$ Strengthening (e.g., Omega test): $\frac{t \ge n}{t = n \quad t \ge n+1}$

► For poly-size interpolants: either integer division ÷ or bounded quantifiers needed.

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI	\checkmark	√ 2	\checkmark	\checkmark^1	\checkmark		 Image: A start of the start of	\checkmark	\checkmark	
gen. QFI	\checkmark	√2	\checkmark							

- Alberto Griggio, Thi Thieu Hoa Le, Roberto Sebastiani: Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic. TACAS 2011: 143-157
- Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. J. Autom. Reason. 47(4): 341-367 (2011)

 $^1\text{Needs}$ a divisibility operator | integer division \div or bounded quantifiers. $^2\text{Needs}$ a diff function.

Philipp Rümmer

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI					\checkmark		\checkmark	\checkmark	\checkmark	
gen. QFI	\checkmark	✓2	\checkmark	\checkmark^1						

- Alberto Griggio, Thi Thieu Hoa Le, Roberto Sebastiani: Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic. TACAS 2011: 143-157
- Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. J. Autom. Reason. 47(4): 341-367 (2011)
- Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: Beyond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic. VMCAI 2011: 88-102

Philipp Rümmer

 $^{^1\}text{Needs}$ a divisibility operator | integer division \div or bounded quantifiers. $^2\text{Needs}$ a diff function.

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI					\checkmark	X 3	\checkmark	\checkmark	\checkmark	
gen. QFI	\checkmark	✓2	\checkmark	\checkmark^1						

- Alberto Griggio, Thi Thieu Hoa Le, Roberto Sebastiani: Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic. TACAS 2011: 143-157
- Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. J. Autom. Reason. 47(4): 341-367 (2011)
- Angelo Brillout, Daniel Kroening, PR, Thomas Wahl: Beyond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic. VMCAI 2011: 88-102
- Peter Backeman, PR, Aleksandar Zeljic: Bit-Vector Interpolation and Quantifier Elimination by Lazy Reduction. FMCAD 2018: 1-10

¹Needs a divisibility operator + integer division \div or bounded quantifiers.

²Needs a *diff* function.

³Integer polynomials.

Philipp Rümmer

Interpolation paradigms

- 1. Proof-based
 - 1.1 Bottom-up: propagate partial interpolants ("resolution-style")
 - 1.2 Top-down: recursive computation of interpolants
- 2. Graph-based: summarize edges in an e-graph
- 3. Quantifier elimination
- 4. Reduction-based: by mapping interpolation problem to another theory

Deepak Kapur, Rupak Majumdar, Calogero G. Zarba: Interpolation for data structures. SIGSOFT FSE 2006: 105-116

Fixed-length bit-vectors

> Formalization of machine arithmetic, very widely used in verification

- ▶ Domains $x \in \mathbb{B}^n$, often for n = 32 or n = 64
- Different classes of operations:
 - Arithmetic: bvadd, bvmul, ...
 - Sequence: concat, extract, shift, ...
 - Bit-wise: bvand, bvor, ...

Though finite, often resulting in very hard constraints

Approaches

▶ Approach 1: reduction to propositional logic → "bit-blasting"

Approach 3: lazy reduction to LIA/NIA

Approaches

- Approach 1: reduction to propositional logic \rightarrow "bit-blasting"
 - Good for formulas with many bit-wise operations
 - Low-level propositional interpolants, less useful for software verification
- Approach 2: reduction to LIA/NIA

Approach 3: lazy reduction to LIA/NIA

Approaches

- Approach 1: reduction to propositional logic \rightarrow "bit-blasting"
 - Good for formulas with many bit-wise operations
 - Low-level propositional interpolants, less useful for software verification
- Approach 2: reduction to LIA/NIA
 - Good for formulas with mostly linear, arithmetic operations
 - Due to overflows, often leads to hard LIA formulas and convoluted interpolants
- Approach 3: lazy reduction to LIA/NIA

A. Griggio, "Effective word-level interpolation for software verification," FMCAD 2011

Approaches

- Approach 1: reduction to propositional logic \rightarrow "bit-blasting"
 - Good for formulas with many bit-wise operations
 - Low-level propositional interpolants, less useful for software verification
- Approach 2: reduction to LIA/NIA
 - Good for formulas with mostly linear, arithmetic operations
 - Due to overflows, often leads to hard LIA formulas and convoluted interpolants
- Approach 3: lazy reduction to LIA/NIA
 - Good for formulas with mostly arithmetic operations; much "nicer" interpolants
 - Still difficult to support bit-wise operations efficiently
- A. Griggio, "Effective word-level interpolation for software verification," FMCAD 2011
- Peter Backeman, PR, Aleksandar Zeljic: Bit-Vector Interpolation and Quantifier Elimination by Lazy Reduction. FMCAD 2018: 1-10

Philipp Rümmer

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI					\checkmark	Х3	\checkmark	\checkmark	\checkmark	
gen. QFI	\checkmark	✓2	\checkmark	\checkmark^1						

¹Needs integer division \div or bounded quantifiers. ²Needs a *diff* function.

³Integer polynomials.

Philipp Rümmer

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI	\checkmark	√ 2	\checkmark	\checkmark^1	\checkmark	Х3	\checkmark	\checkmark	\checkmark	
gen. QFI	\checkmark	✓2	\checkmark	v 1					\checkmark	

Hossein Hojjat, PR: Deciding and Interpolating Algebraic Data Types by Reduction. SYNASC 2017: 145-152

¹Needs integer division ÷ or bounded quantifiers.
 ²Needs a *diff* function.
 ³Integer polynomials.

Philipp Rümmer

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT	Strings
plain QFI	\checkmark	√ 2	\checkmark	\checkmark^1	\checkmark	Х3	\checkmark	\checkmark	\checkmark	
gen. QFI	\checkmark	√2	\checkmark	v 1			\checkmark	\checkmark	\checkmark	

Hossein Hojjat, PR: Deciding and Interpolating Algebraic Data Types by Reduction. SYNASC 2017: 145-152

¹Needs integer division ÷ or bounded quantifiers.
 ²Needs a *diff* function.
 ³Integer polynomials.

Philipp Rümmer

Interpolation paradigms

- 1. Proof-based
 - 1.1 Bottom-up: propagate partial interpolants ("resolution-style")
 - 1.2 Top-down: recursive computation of interpolants
- 2. Graph-based: summarize edges in an e-graph
- 3. Quantifier elimination
- 4. Reduction-based: by mapping interpolation problem to another theory
- 5. Constraint-based: systematic search for interpolants in some language
 - Syntax-guided synthesis
 - Linear arithmetic constraint solving

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT
plain QFI	✓	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
gen. QFI	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
MathSAT5									
OpenSMT2									
Princess									
SMTInterpol									
cvc5									
Vampire									
Z3									

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT
plain QFI	\checkmark	✓	\checkmark	 Image: A start of the start of	\checkmark	×	\checkmark	\checkmark	\checkmark
gen. QFI	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
MathSAT5	\checkmark	?	\checkmark	\checkmark			\checkmark	?	
OpenSMT2									
Princess									
SMTInterpol									
cvc5									
Vampire									
Z3									

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT
plain QFI	✓	✓	\checkmark	 Image: A start of the start of	\checkmark	×	✓	\checkmark	\checkmark
gen. QFI	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
MathSAT5	✓	?	\checkmark	\checkmark			\checkmark	?	
OpenSMT2	\checkmark		\checkmark	\checkmark					
Princess									
SMTInterpol									
cvc5									
Vampire									
Z3									

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT
plain QFI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
gen. QFI	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
MathSAT5	\checkmark	?	\checkmark	\checkmark			\checkmark	?	
OpenSMT2	\checkmark		\checkmark	\checkmark					
Princess	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
SMTInterpol									
cvc5									
Vampire									
Z3									

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT
plain QFI	\checkmark	✓	\checkmark	✓	\checkmark	×	✓	\checkmark	\checkmark
gen. QFI	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
MathSAT5	\checkmark	?	\checkmark	✓			\checkmark	?	
OpenSMT2	\checkmark		\checkmark	\checkmark					
Princess	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
SMTInterpol	\checkmark	\checkmark	\checkmark	\checkmark					
cvc5									
Vampire									
Z3									

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT
plain QFI	\checkmark	\checkmark	\checkmark	✓	\checkmark	×	\checkmark	\checkmark	\checkmark
gen. QFI	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	√
MathSAT5	\checkmark	?	\checkmark	\checkmark			\checkmark	?	
OpenSMT2	\checkmark		\checkmark	\checkmark					
Princess	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
SMTInterpol	\checkmark	\checkmark	\checkmark	\checkmark					
cvc5	v 1	\checkmark							
Vampire									
Z3									

¹Via syntax-guided synthesis.

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT
plain QFI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
gen. QFI	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
MathSAT5	\checkmark	?	\checkmark	\checkmark			✓	?	
OpenSMT2	\checkmark		\checkmark	\checkmark					
Princess	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
SMTInterpol	\checkmark	\checkmark	\checkmark	\checkmark					
cvc5	v 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Vampire	\checkmark	✓ 2	\checkmark	\checkmark					
Z3									

¹Via syntax-guided synthesis. ²Ecoursing on first order internals

²Focussing on first-order interpolants.

	EUF	Arrays	LRA	LIA	NRA	NIA	BV	Floats	ADT
plain QFI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
gen. QFI	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
MathSAT5	\checkmark	?	\checkmark	\checkmark			\checkmark	?	
OpenSMT2	\checkmark		\checkmark	\checkmark					
Princess	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
SMTInterpol	\checkmark	\checkmark	✓	\checkmark					
cvc5	$\sqrt{1}$	 Image: A set of the set of the	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	\checkmark
Vampire	\checkmark	√2	\checkmark	\checkmark					
Z3		√3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

¹Via syntax-guided synthesis.

²Focussing on first-order interpolants.

³Via its constrained Horn clause engine.

Philipp Rümmer

Beyond binary interpolation

Extended versions of interpolation

- Sequence interpolants
- Tree interpolants
- Disjunctive interpolants
- DAG interpolants

- ► All those notions can be reduced to binary/standard interpolation.
- But they are quite widely used: most solvers support sequence and/or tree interpolants.

Example: tree interpolation

Tree interpolant

Suppose T = (V, E) is a finite directed tree, and $\phi: V \to For$ a labeling function such that $\bigwedge_{v \in V} \phi(v)$ is unsatisfiable.

- $I: V \rightarrow \mathit{For}$ is a tree interpolant if
 - ► I(root) = false
 - For all $v \in V$: $\phi(v) \land \bigwedge_{(v,w) \in E} I(w) \models I(v)$
 - Non-logical symbols in I(v) occur both in the sub-tree underneath v and in the rest of the tree.

Craig interpolation as recursion-free Horn solving

Observation

• Let A, B be formulas with common variables \bar{x} .

► Then:

 $I(ar{x})$ is a reverse interpolant of $A \wedge B$ \Leftrightarrow Formulas $A o I(ar{x})$ and $B \wedge I(ar{x}) o false$ are valid

- $A \rightarrow I(\bar{x}), B \wedge I(\bar{x}) \rightarrow false$ can be seen as constrained Horn clauses over a relation symbol I.
- Correspondence between (extended) Craig interpolants and solution sets of recursion-free Horn clauses

William Craig

Alfred Horn

Taxonomy of Recursion-free Horn Clauses & Interpolation

Philipp Rümmer

Recursion-Free Horn Clause Fragments

Linear: the body of each clause contains at most one relation symbol.

Body-disjoint: each relation symbol occurs at most once in body of a clause.

Tree-like: body-disjoint & head-disjoint: each relation symbol occurs at most once in head of a clause.

1) $C_1 \wedge R_2(\bar{x}) \rightarrow R_1(\bar{x})$ 2) $C_2 \wedge R_4(\bar{x}) \rightarrow R_1(\bar{x})$ $(3)C_3 \wedge R_3(\bar{x}) \rightarrow R_1(\bar{x})$ 4) $C_4 \wedge R_4(\bar{x}) \rightarrow R_2(\bar{x})$ 5) $C_5 \wedge R_4(\bar{x}) \rightarrow R_3(\bar{x})$ 1) $C_1 \wedge R_2(\bar{x}) \wedge R_3(\bar{x}) \rightarrow R_1(\bar{x})$ 2) $C_2 \wedge R_4(\bar{x}) \wedge R_5(\bar{x}) \rightarrow R_1(\bar{x})$ 3) $C_2 \wedge R_6(\bar{x}) \rightarrow R_2(\bar{x})$ $1)C_1 \wedge R_2(\bar{x}) \wedge R_3(\bar{x}) \rightarrow R_1(\bar{x})$ 2) $C_2 \wedge R_4(\bar{x}) \wedge R_5(\bar{x}) \rightarrow R_2(\bar{x})$ $(3)C_3 \wedge R_6(\bar{x}) \rightarrow R_3(\bar{x})$

Horn solving in verification

- Constrained Horn clauses are considered a "unifying framework" in software model checking
- Horn solvers often internally use Craig interpolation
- Vice versa, Horn solvers are able to compute Craig interpolants

 PR, Hossein Hojjat, Viktor Kuncak: The Relationship between Craig Interpolation and Recursion-Free Horn Clauses. CoRR abs/1302.4187 (2013)

Conclusions

Consider the talk as the starting point of a systematic survey

- Several dimensions remain to be explored:
 - Support for theory combination
 - Interpolation vs. uniform interpolation
 - Support for quantifiers
 - Complexity

Comments, questions?

Challenges

Interpolation for some of the theories:

- Bit-vectors
- Floating-point numbers
- Strings, sequences

▶ What is a good interpolant? How to search for interpolants?