LIVING WITHOUT BETH AND CRAIG

Based on joint work with Alessandro Artale, Jędrzej Kołodziejski, Andrea Mazzullo, Ana Ozaki, Frank Wolter

22/04/2024

Jean Christoph Jung

AMSTERDAM, CIBD'24

TU Dortmund University

MOTIVATION

- Craig interpolants and explicit definitions have many applications in knowledge representation and reasoning
- many logics have Craig Interpolation Property / Projective Beth Definability Property

propositional logic, basic modal logic, first-order logic ...

- **consequence:** there "always" is an interpolant if you need one
- **similarly:** there "always" is an explicit definition if possible

> many logics **do not** enjoy Beth's / Craig's properties

> FO², guarded-fragment, LTL, extensions of ML and description logics ...

What to do? How to live without Beth and Craig?

CRAIG INTERPOLATION

 θ is an **interpolant** for φ, φ' if $\varphi \models \theta \models \varphi'$ and $sig(\theta) \subseteq sig(\varphi) \cap sig(\varphi')$.

Logic \mathscr{L} has **Craig interpolation property** if for every $\varphi, \varphi' \in \mathscr{L}$:

$$\varphi \models \varphi'$$
 iff there is an \mathscr{L} -interpolant for φ, φ' .

Example propositional logic has CIP Let $\varphi \models \varphi'$ and let p_1, \dots, p_n be the propositions in φ , but not in φ' Then $\exists p_1 \dots \exists p_n . \varphi$ is an interpolant for φ, φ' where $\exists x . \psi := \psi[x/0] \lor \psi[x/1]$

- > interpolant is **uniform** (does not depend on φ')
- construction is exponential (not known whether this is necessary)
- alternative: extract from **resolution proof** for inconsistency of $\varphi, \neg \varphi'$

FIRST ORDER LOGIC

FO has CIP

Craig constructed an interpolant for $\varphi \models \varphi'$ from a proof for $\varphi \rightarrow \varphi'$.

Uniform interpolants do **not** always exist:

$$\varphi = \forall x \left(A(x) \to B(x) \land (B(x) \to \exists y (R(x, y) \land B(y)) \right)$$

Then: A(x) implies infinite *R*-path, not expressible in FO (over *A*, *R*)

CIP **not** preserved for sublogics or for subclasses of structures:

- Guarded and Two-Variable Fragments, some modal logics
- FO over words (=LTL)

BETH DEFINABILITY

 θ is explicit Σ -definition for R under φ if $\varphi \models \forall \mathbf{x} R(\mathbf{x}) \leftrightarrow \theta(\mathbf{x})$ and sig $(\theta) \subseteq \Sigma$.

Logic \mathscr{L} has **projective Beth definability property** if for every $\varphi \in \mathscr{L}$, R, Σ :

R "determined" by φ and Σ iff there is explicit $\mathscr{L}(\Sigma)$ -definition for *R* under φ

Well-known:

- Explicit Definability reduces to Interpolant Existence
- CIP implies PBDP
- Explicit Definability reduces to validity in logics with PBDP
- FO, ML, PL have PBDP, **but** LTL, FO², GF not

APPLICATION 1 — CONCEPT LEARNING

Knowledge base is pair $(\mathcal{O}, \mathcal{D})$ consisting of database \mathcal{D} and ontology \mathcal{O} .

Let $P, N \subseteq \text{dom}(\mathcal{D})$ be sets of positive and negative **examples** We say that $\varphi(x)$ fits P, N over $(\mathcal{O}, \mathcal{D})$ if:

- $\mathcal{O} \cup \mathcal{D} \models \varphi(a)$ for all $a \in P$ and
- $\mathcal{O} \cup \mathcal{D} \models \neg \varphi(a)$ for all $a \in N$.

Example

$$\mathcal{D} = \{ \text{teaches}(alice, logic), \text{student}(bob) \}$$

 $\mathcal{O} = \{ \forall x \, . \, \mathsf{student}(x) \rightarrow \neg \exists y \, . \, \mathsf{teaches}(x, y) \}$

Then: $\varphi(x) = \text{student}(x)$ **fits** $P = \{bob\}$ and $N = \{alice\}$ over $(\mathcal{O}, \mathcal{D})$

Fitting formula can be thought of as a **classifier** \Rightarrow machine learning

APPLICATION 1 — CONCEPT LEARNING

Knowledge base is pair $(\mathcal{O}, \mathcal{D})$ consisting of database \mathcal{D} and ontology \mathcal{O} .

Let $P, N \subseteq \text{dom}(\mathcal{D})$ be sets of positive and negative **examples** We say that $\varphi(x)$ fits P, N over $(\mathcal{O}, \mathcal{D})$ if:

- $\mathcal{O} \cup \mathcal{D} \models \varphi(a)$ for all $a \in P$ and
- $\mathcal{O} \cup \mathcal{D} \models \neg \varphi(a)$ for all $a \in N$.

Fitting existence asks for the existence of a fitting formula given $(\mathcal{O}, \mathcal{D}), P, N$

Lots of interest in description logic knowledge bases:

- theory [Baader, Funk, Hitzler, J, Lehmann, Lutz, Wolter, ...]
- several systems
 - DL-Learner [Hitzler & Lehmann MLJ 2010]
 - DL-Foil [Fanizzi, d'Amato, Esposito ILP 2008]
 - SPELL [ten Cate, Funk, J, Lutz IJCAI 2023]

APPLICATION 1 — CONCEPT LEARNING

In important cases:

[Artale, J, Mazzullo, Ozaki, Wolter ToCL 2023]

- fitting existence can be reduced to interpolant existence in a way that fitting formulas correspond directly to interpolants
- interpolant existence can be reduced to fitting existence in the same way
- \Rightarrow interpolant existence and fitting existence are the same problem

Reduction needs **constants** in the language

Example Modal Logic with constants does **not** enjoy CIP

Consider: $\varphi = a \land \Diamond a$ and $\varphi' = b \rightarrow \Diamond b$ for constants a, b

Clearly: $\varphi \models \varphi'$, but in ML with only \diamondsuit we cannot express a self-loop

APPLICATION 2 — DEFINITIONS

Ontology design

Ontology \mathcal{O} describes domain knowledge as a set of logical formulas

Interesting from user perspective:

Does \mathcal{O} define the meaning of A? If so, can we extract a definition?

Referring Expressions

In many applications in data management constants are not meaningful to the user, e.g., identifier 0x1234

Interesting from user perspective:

Is there a definition for the constant 0x1234 in the given knowledge base? If so, can you provide it?

Note: requires constants in the language

STARTING POINT

General Characterization a la Robinson [1956] Let $\mathscr{L} \subseteq$ FO and $\varphi(\mathbf{x}), \varphi'(\mathbf{x}) \in \mathscr{L}$ with $\Sigma = \operatorname{sig}(\varphi) \cap \operatorname{sig}(\varphi')$. TFAE:

- 1. There is no interpolant for $\varphi(\mathbf{x}), \varphi'(\mathbf{x})$
- 2. There are models $\mathfrak{A}, \mathbf{a} \models \varphi, \mathfrak{B}, \mathbf{b} \models \neg \varphi'$ such that for all $\mathscr{L}(\Sigma)$ -formulae ψ :

3. $\varphi, \neg \varphi'$ are jointly \mathscr{L}, Σ -consistent

where $\sim_{\mathscr{L},\Sigma}$ is indistinguishability in the **infinite game** for \mathscr{L}, Σ , e.g.:

compactness

- bisimulation for modal logic
- guarded bisimulation for GF
- 2-pebble games for FO²

$$\mathfrak{A}, \mathbf{a} \models \psi$$
 iff $\mathfrak{B}, \mathbf{b} \models \psi$

11

BISIMULATION

2-Player game on structures: Spoiler vs Duplicator

- starting position (u_0, v_0)
- in round *i* and position (u_i, v_i) :

(back) Spoiler chooses $u_i \rightarrow u_{i+1}$ and Duplicator replies with $v_i \rightarrow v_{i+1}$, or

(forth) Spoiler chooses $v_i \rightarrow v_{i+1}$ and Duplicator replies with $u_i \rightarrow u_{i+1}$

- Spoiler wins if not: (atom) u_i and v_i agree on all Σ -propositions
- Duplicator has winning strategy from (u_0, v_0) if they can force infinite game

Lemma $u \sim_{ML,\Sigma} v$ implies $\mathfrak{A}, u \models \psi$ iff $\mathfrak{A}, v \models \psi$, for all modal Σ -formulae Converse direction holds over ω -saturated structures.

EXAMPLE MODAL LOGIC

General Characterization

Let $\mathscr{L} \subseteq$ FO and $\varphi(\mathbf{x}), \varphi'(\mathbf{x}) \in \mathscr{L}$ with $\Sigma = \operatorname{sig}(\varphi) \cap \operatorname{sig}(\varphi')$. TFAE:

- 1. There is no interpolant for $\varphi(\mathbf{x}), \varphi'(\mathbf{x})$
- 2. $\varphi, \neg \varphi'$ are jointly \mathscr{L}, Σ -consistent

Example

$$\varphi = a \wedge \diamondsuit a \text{ and } \varphi' = b \to \diamondsuit b \text{ where } \varphi \models \varphi' \text{ and } a, b \text{ are constants}$$

 \Rightarrow no interpolant

JOINT CONSISTENCY IS HARD

no interpolant for $\varphi \land \varphi_0 \models \varphi \to \varphi_0$ iff $\varphi \land \varphi_0, \varphi \land \neg \varphi_0$ jointly consistent

 $\varphi_0 = \Diamond^n a \wedge \Box^n a$ Consider $\varphi = ((\neg \varphi_0 \land \Diamond^n . true) \rightarrow p) \land \ , p \text{ enforces binary tree of depth } n''$ $\varphi \wedge \varphi_0$ $\varphi \wedge \neg \varphi_0$ this idea \Rightarrow interpolant existence is coNExpTime-hard all leaves bisimilar to a and thus bisimilar!

DECIDING JOINT CONSISTENCY

Observation 1 witness for joint consistency can assumed to be tree-like

Observation 2 witness for joint consistency has bounded depth

Observation 3 witness for joint consistency has bounded outdegree

"Guess and check" algorithm

- Guess witness for consistency of exponential size
- Check that the required bisimulation exists

Consequence Interpolant existence in ML + constants coNExpTime-complete (same for explicit definition existence)

[Artale, J, Mazzullo, Ozaki, Wolter ToCL 2023]

EXTENSIONS

coNExpTime-completeness extends to:

- converse modality
- multimodal logic \Diamond_i
- inclusion constraints between accessibility relations $R_i \subseteq R_j$ (hardness already holds only under inclusion constraints w/o constants)

Important from KR / description logic perspective:

interpolants under ontologies as background knowledge

 θ is interpolant of $\varphi, \varphi' \operatorname{\mathbf{under}} \varphi_0$ if

heta is interpolant of arphi, arphi' over structures that **globally** satisfy $arphi_0$

 $\Rightarrow \mathfrak{A}, \mathfrak{B}$ in joint consistency have to globally satsify $arphi_0$

JOINT CONSISTENCY UNDER ONTOLOGIES

Standard procedures for **global satisfiability** in ML ist **type elimination**

- **type** = syntactic description of single element
- \Rightarrow fail to capture any bisimilarities

Alternative: **mosaic** = (T_1, T_2) for sets T_1, T_2 of types, "are realizable in joint consistent models of φ , $\neg \varphi'$ under φ_0 "

Mosaic Elimination Procedure

- Start with the set of all mosaics
- remove mosaics not satisfying (atom)
- remove mosaic (T_1, T_2) if (back) or (forth) not satisfiable in current mosaics

2Exp many mosaics \Rightarrow 2ExpTime upper bound (for all extensions + tight)

ML, GF² enjoys CIP/PBDP, but GF, FO² do not

uniform interpolants

[J, Martel, Lutz, Schneider, Wolter ICALP 2017]

- GF² does not have uniform interpolants, but recognition is decidable (2ExpTime-c)
- GF, FO²: even recognition is undecidable

interpolant existence

- **decidable** in GF: 2/3 ExpTime-complete
- **decidable** in FO²: 2ExpTime...2NExpTime
- **undecidable** in FO² with two equivalence relations

[Wolter & Zakharyaschev 2024]

[J, Wolter 2021]

non-trivial extensions

LTL

Lack of CIP/PBDP. Intuitively due to the fact that EVEN is implicitly definable

Interpolant existence Given $\varphi \models \varphi'$, is there an interpolant?

- $\exists p_1 \dots \exists p_n . \varphi$ is uniform interpolant for φ
- LTL not closed under projection $\Rightarrow \exists p_1 \dots \exists p_n . \varphi$ regular

⇒ interpolant existence reduces to **separability** question

Separability of regular languages by FO language:

- decidable in ExpTime [Place & Zeitoun 2016]
- separator/interpolant computable
- notoriously open problem over trees

MODAL SEPARABILITY OF μ -FORMULAE

$\mathscr{L}, \mathscr{L}'$ -separability:

restrict logic instead of signature!

Given $\varphi, \varphi' \in \mathscr{L}$, decide whether there is $\theta \in \mathscr{L}'$ with $\varphi \models \theta \models \varphi'$.

 $\Rightarrow \text{generalizes } \mathscr{L}'\text{-}\mathbf{definability} \text{ of } \mathscr{L}\text{-}\text{formulae:}$ $\varphi \text{ is } \mathscr{L}'\text{-}\text{definable} \quad \text{iff} \quad \varphi, \varphi \text{ are } \mathscr{L}'\text{-}\text{separable}$

μ **ML, ML-separability**

[J, Kołodziejski, 2024]

- ML-definability of μ ML formula is ExpTime-complete [Otto, STACS 1999]
- ML-separability is ExpTime-complete, also over finite/infinite trees
- ML-separability **over words** is PSpace-complete

COMPUTING SEPARATORS

One contribution is computation of separating formula

Strategy

- 1. φ, φ' ML-separable \Rightarrow separable by formula of depth $\ell \in O(2^{|\varphi| + |\varphi'|})$
- 2. compute ℓ -universal consequence θ of φ : uniform interpolant for ML formulas up to depth ℓ

essentially by reading it off from \mathscr{A}_{φ} :

 θ describes behaviour of \mathscr{A}_{φ} up to depth ℓ

Consequence If any, there is a separator of size 2^{2^n} , and this is optimal.

COMPUTING INTERPOLANTS

Might be most interesting from practical perspective, but:

Bad news our computation algorithm inspired by one for ML does not work (and currently we don't know how to fix it :-/)

Conjecture price of elegant characterization via joint realizability is loss of constructability (**compactness!**)

Way forward show bound on the quantifier depth ℓ of the potential interpolant

- bound is trivial for ML with constants / inclusion constraints, but not under ontologies and not for GF/FO²!
- **brutal way** disjunction over all types of depth $\ell \Rightarrow$ non-elementary
- **alternative** automata-based construction?

CONCLUSION

Take-home message

- **non-uniform** approach to interpolation / explicit definability
 - ⇒ decide in each case when an interpolant / explicit definition exists
- Interpolant / definition existence **usually harder than satisfiability** but often decidable

Challenges

- computation problem
- investigate other logics without CIP, e.g. for FO^2 + counting
- other areas?
- investigate separability / definability

THANK YOU VERY MUCH!

QUESTIONS?