LIVING WITHOUT BETH AND CRAIG

Based on joint work with Alessandro Artale, Jędrzej Kołodziejski, Andrea Mazzullo, Ana Ozaki, Frank Wolter

MOTIVATION

> Craig interpolants and explicit definitions have many applications in knowledge representation and reasoning
many logics have Craig Interpolation Property /
Projective Beth Definability Property
\geqslant propositional logic, basic modal logic, first-order logic ...
> consequence: there „always" is an interpolant if you need one
> similarly: there „always" is an explicit definition if possible
many logics do not enjoy Beth's / Craig's properties
$\geqslant \mathrm{FO}^{2}$, guarded-fragment, LTL, extensions of ML and description logics ...
What to do? How to live without Beth and Craig?

CRAIG INTERPOLATION

θ is an interpolant for $\varphi, \varphi^{\prime}$ if $\varphi \vDash \theta \vDash \varphi^{\prime}$ and $\operatorname{sig}(\theta) \subseteq \operatorname{sig}(\varphi) \cap \operatorname{sig}\left(\varphi^{\prime}\right)$.
Logic \mathscr{L} has Craig interpolation property if for every $\varphi, \varphi^{\prime} \in \mathscr{L}$:

$$
\varphi \vDash \varphi^{\prime} \quad \text { iff } \quad \text { there is an } \mathscr{L} \text {-interpolant for } \varphi, \varphi^{\prime} .
$$

Example propositional logic has CIP
Let $\varphi \vDash \varphi^{\prime}$ and let p_{1}, \ldots, p_{n} be the propositions in φ, but not in φ^{\prime}
Then $\exists p_{1} \ldots \exists p_{n} . \varphi$ is an interpolant for $\varphi, \varphi^{\prime}$

$$
\text { where } \exists x . \psi:=\psi[x / 0] \vee \psi[x / 1]
$$

$>$
$>$interpolant is uniform (does not depend on φ^{\prime})
construction is exponential (not known whether this is necessary)
\geqslant alternative: extract from resolution proof for inconsistency of $\varphi, \neg \varphi^{\prime}$

FIRST ORDER LOGIC

FO has CIP

Craig constructed an interpolant for $\varphi \vDash \varphi^{\prime}$ from a proof for $\varphi \rightarrow \varphi^{\prime}$.

Uniform interpolants do not always exist:

$$
\varphi=\forall x(\quad A(x) \rightarrow B(x) \quad \wedge \quad(B(x) \rightarrow \exists y(R(x, y) \wedge B(y)))
$$

Then: $\quad A(x)$ implies infinite R-path, not expressible in FO (over A, R)

CIP not preserved for sublogics or for subclasses of structures:

- Guarded and Two-Variable Fragments, some modal logics
- FO over words (=LTL)

BETH DEFINABILITY

θ is explicit Σ-definition for R under φ if $\varphi \vDash \forall \mathbf{x} R(\mathbf{x}) \leftrightarrow \theta(\mathbf{x})$ and $\operatorname{sig}(\theta) \subseteq \Sigma$.
Logic \mathscr{L} has projective Beth definability property if for every $\varphi \in \mathscr{L}, R, \Sigma$:
R "determined" by φ and $\Sigma \quad$ iff \quad there is explicit $\mathscr{L}(\Sigma)$-definition for R under φ

Well-known:

- Explicit Definability reduces to Interpolant Existence
- CIP implies PBDP
- Explicit Definability reduces to validity in logics with PBDP
- FO, ML, PL have PBDP, but LTL, FO ${ }^{2}$, GF not

APPLICATION 1 - CONCEPT LEARNING

Knowledge base is pair $(\mathcal{O}, \mathscr{D})$ consisting of database \mathscr{D} and ontology \mathcal{O}.
Let $P, N \subseteq \operatorname{dom}(\mathscr{D})$ be sets of positive and negative examples
We say that $\varphi(x)$ fits P, N over $(\mathcal{O}, \mathscr{D})$ if:

- $\mathcal{O} \cup \mathscr{D} \vDash \varphi(a)$ for all $a \in P$ and
- $\mathcal{O} \cup \mathscr{D} \vDash \neg \varphi(a)$ for all $a \in N$.

Example

$$
\begin{aligned}
\mathscr{D} & =\{\text { teaches }(\text { alice }, \text { logic }), \text { student }(\text { bob })\} \\
\mathcal{O} & =\{\forall x \cdot \operatorname{student}(x) \rightarrow \neg \exists y . \operatorname{teaches}(x, y)\}
\end{aligned}
$$

Then: $\quad \varphi(x)=\operatorname{student}(x)$ fits $P=\{b o b\}$ and $N=\{$ alice $\}$ over $(\mathcal{O}, \mathscr{D})$

Fitting formula can be thought of as a classifier \Rightarrow machine learning

APPLICATION 1 - CONCEPT LEARNING

Knowledge base is pair $(\mathcal{O}, \mathscr{D})$ consisting of database \mathscr{D} and ontology \mathcal{O}.
Let $P, N \subseteq \operatorname{dom}(\mathscr{D})$ be sets of positive and negative examples
We say that $\varphi(x)$ fits P, N over $(\mathcal{O}, \mathscr{D})$ if:

- $\mathcal{O} \cup \mathscr{D} \vDash \varphi(a)$ for all $a \in P$ and
- $\mathcal{O} \cup \mathscr{D} \vDash \neg \varphi(a)$ for all $a \in N$.

Fitting existence asks for the existence of a fitting formula given $(\mathcal{O}, \mathscr{D}), P, N$
Lots of interest in description logic knowledge bases:

- theory [Baader, Funk, Hitzler, J, Lehmann, Lutz, Wolter, ...]
- several systems
- DL-Learner [Hitzler \& Lehmann MLJ 2010]
- DL-Foil [Fanizzi, d’Amato, Esposito ILP 2008]
- SPELL [ten Cate, Funk, J, Lutz IJCAI 2023]

APPLICATION 1 - CONCEPT LEARNING

In important cases:
[Artale, J, Mazzullo, Ozaki, Wolter ToCL 2023]

- fitting existence can be reduced to interpolant existence in a way that fitting formulas correspond directly to interpolants
- interpolant existence can be reduced to fitting existence in the same way
\Rightarrow interpolant existence and fitting existence are the same problem

Reduction needs constants in the language
Example Modal Logic with constants does not enjoy CIP
Consider: $\quad \varphi=a \wedge \diamond a$ and $\varphi^{\prime}=b \rightarrow \diamond b$ for constants a, b
Clearly: $\quad \varphi \vDash \varphi^{\prime}$, but in ML with only \diamond we cannot express a self-loop

APPLICATION 2 - DEFINITIONS

Ontology design

Ontology \mathcal{O} describes domain knowledge as a set of logical formulas Interesting from user perspective:

Does \mathcal{O} define the meaning of A ? If so, can we extract a definition?

Referring Expressions

In many applications in data management constants are not meaningful to the user, e.g., identifier 0x1234

Interesting from user perspective:
Is there a definition for the constant 0x1234 in the given knowledge base? If so, can you provide it?

Note: requires constants in the language

OVERVIEW

Interpolants and explicit definitions important in KR

If considered logics have CIP / PBDP $\quad \backsim$ But if not
\therefore

allow interpolants/definitions in larger logic

- works e.g., GF \rightarrow GNFO
- not for FO^{2} : every extension with CIP is undecidable [Comer \& ten Cate, 2024]
- same for hybrid logic
[ten Cate, 2005]

Investigate existence problem
Given $\varphi, \varphi^{\prime}$, is there an interpolant?
\Rightarrow non-uniform approach

1. Decidable fragments of FO modal and description logics guarded and two-variable fragment
2. LTL

STARTING POINT

General Characterization a la Robinson [1956]
Let $\mathscr{L} \subseteq$ FO and $\varphi(\mathbf{x}), \varphi^{\prime}(\mathbf{x}) \in \mathscr{L}$ with $\Sigma=\operatorname{sig}(\varphi) \cap \operatorname{sig}\left(\varphi^{\prime}\right)$. TFAE:

1. There is no interpolant for $\varphi(\mathbf{x}), \varphi^{\prime}(\mathbf{x})$
2. There are models $\mathfrak{A}, \mathbf{a} \vDash \varphi, \mathfrak{B}, \mathbf{b} \vDash \neg \varphi^{\prime}$ such that for all $\mathscr{L}(\Sigma)$-formulae ψ :

$$
\mathfrak{A}, \mathbf{a} \vDash \psi \quad \text { iff } \quad \mathfrak{B}, \mathbf{b} \vDash \psi
$$

3. $\varphi, \neg \varphi^{\prime}$ are jointly \mathscr{L}, Σ-consistent

where $\sim_{\mathscr{L}, \Sigma}$ is indistinguishability in the infinite game for \mathscr{L}, Σ, e.g.:

- bisimulation for modal logic
- guarded bisimulation for GF
- 2-pebble games for FO^{2}

BISIMULATION

2-Player game on structures: Spoiler vs Duplicator

- starting position $\left(u_{0}, v_{0}\right)$
- in round i and position $\left(u_{i}, v_{i}\right)$:
(back) Spoiler chooses $u_{i} \rightarrow u_{i+1}$ and Duplicator replies with $v_{i} \rightarrow v_{i+1}$, or
(forth) Spoiler chooses $v_{i} \rightarrow v_{i+1}$ and Duplicator replies with $u_{i} \rightarrow u_{i+1}$
- Spoiler wins if not:
(atom) u_{i} and v_{i} agree on all Σ-propositions
- Duplicator has winning strategy from $\left(u_{0}, v_{0}\right)$ if they can force infinite game

$$
\Rightarrow \quad u_{0} \sim_{M L, \Sigma} v_{0}
$$

Lemma $u \sim_{M L, \Sigma} v$ implies $\mathfrak{A}, u \vDash \psi$ iff $\mathfrak{A} \boldsymbol{A}, v \vDash \psi$, for all modal \sum-formulae Converse direction holds over ω-saturated structures.

EXAMPLE MODAL LOGIC

General Characterization

Let $\mathscr{L} \subseteq$ FO and $\varphi(\mathbf{x}), \varphi^{\prime}(\mathbf{x}) \in \mathscr{L}$ with $\Sigma=\operatorname{sig}(\varphi) \cap \operatorname{sig}\left(\varphi^{\prime}\right)$. TFAE:

1. There is no interpolant for $\varphi(\mathbf{x}), \varphi^{\prime}(\mathbf{x})$
2. $\varphi, \neg \varphi^{\prime}$ are jointly \mathscr{L}, Σ-consistent

Example

$$
\varphi=a \wedge \diamond a \text { and } \varphi^{\prime}=b \rightarrow \diamond b \text { where } \varphi \vDash \varphi^{\prime} \quad \text { and } a, b \text { are constants }
$$

\Rightarrow no interpolant

JOINT CONSISTENCY IS HARD

no interpolant for $\varphi \wedge \varphi_{0} \vDash \varphi \rightarrow \varphi_{0} \quad$ iff $\quad \varphi \wedge \varphi_{0}, \varphi \wedge \neg \varphi_{0}$ jointly consistent
Consider $\quad \varphi_{0}=\diamond^{n} a \wedge \square^{n} a$

$$
\varphi=\left(\left(\neg \varphi_{0} \wedge \nabla^{n} . \text { true }\right) \rightarrow p\right) \wedge \quad \text { " } p \text { enforces binary tree of depth } n^{\prime \prime}
$$

this idea \Rightarrow
interpolant existence is coNExpTime-hard
all leaves bisimilar to a and thus bisimilar!

DECIDING JOINT CONSISTENCY

Observation 1 witness for joint consistency can assumed to be tree-like
Observation 2 witness for joint consistency has bounded depth
Observation 3 witness for joint consistency has bounded outdegree
"Guess and check" algorithm

- Guess witness for consistency of exponential size
- Check that the required bisimulation exists

Consequence Interpolant existence in ML + constants coNExpTime-complete (same for explicit definition existence)
[Artale, J, Mazzullo, Ozaki, Wolter ToCL 2023]

EXTENSIONS

coNExpTime-completeness extends to:

- converse modality
- multimodal logic \rangle_{i}
- inclusion constraints between accessibility relations $R_{i} \subseteq R_{j}$ (hardness already holds only under inclusion constraints w/o constants)

Important from KR / description logic perspective:

interpolants under ontologies as background knowledge

θ is interpolant of $\varphi, \varphi^{\prime}$ under φ_{0} if
θ is interpolant of $\varphi, \varphi^{\prime}$ over structures that globally satisfy φ_{0}
$\Rightarrow \mathfrak{A}, \mathfrak{B}$ in joint consistency have to globally satsify φ_{0}

JOINT CONSISTENCY UNDER ONTOLOGIES

Standard procedures for global satisfiability in ML ist type elimination
type $=$ syntactic description of single element
\Rightarrow fail to capture any bisimilarities

Alternative: mosaic $=\left(T_{1}, T_{2}\right)$ for sets T_{1}, T_{2} of types, "are realizable in joint consistent models of $\varphi, \neg \varphi^{\prime}$ under $\varphi_{0}{ }^{\prime}$

Mosaic Elimination Procedure

- Start with the set of all mosaics
- remove mosaics not satisfying (atom)
- remove mosaic (T_{1}, T_{2}) if (back) or (forth) not satisfiable in current mosaics

2Exp many mosaics $\Rightarrow 2$ ExpTime upper bound (for all extensions + tight)

GF AND FO ${ }^{2}$

$\mathrm{ML} \subseteq \mathrm{GF}^{2}$ $c^{G F} \leqslant$ $\leqslant \mathrm{FO}^{2} \stackrel{ }{ }$

ML, GF ${ }^{2}$ enjoys CIP/PBDP, but GF, FO ${ }^{2}$ do not
uniform interpolants
[J, Martel, Lutz, Schneider, Wolter ICALP 2017]

- GF^{2} does not have uniform interpolants, but recognition is decidable (2ExpTime-c)
- GF, FO2 ${ }^{2}$: even recognition is undecidable
interpolant existence
[J, Wolter 2021]
- decidable in GF: 2/3 ExpTime-complete
- decidable in FO^{2} : 2ExpTime...2NExpTime
- undecidable in FO^{2} with two equivalence relations
[Wolter \& Zakharyaschev 2024]

LTL

Lack of CIP/PBDP. Intuitively due to the fact that EVEN is implicitly definable

Interpolant existence Given $\varphi \vDash \varphi^{\prime}$, is there an interpolant?

- $\exists p_{1} \ldots \exists p_{n} . \varphi$ is uniform interpolant for φ
- LTL not closed under projection $\Rightarrow \exists p_{1} \ldots \exists p_{n} . \varphi$ regular
\Rightarrow interpolant existence reduces to separability question

Separability of regular languages by FO language:

- decidable in ExpTime [Place \& Zeitoun 2016]
- separator/interpolant computable
- notoriously open problem over trees

MODAL SEPARABILITY OF μ-FORMULAE

$\mathscr{L}, \mathscr{L}^{\prime}$-separability:

restrict logic instead of signature!

Given $\varphi, \varphi^{\prime} \in \mathscr{L}$, decide whether there is $\theta \in \mathscr{L}^{\prime}$ with $\varphi \vDash \theta \vDash \varphi^{\prime}$.
\Rightarrow generalizes \mathscr{L}^{\prime}-definability of \mathscr{L}-formulae:
φ is \mathscr{L}^{\prime}-definable iff φ, φ are \mathscr{L}^{\prime}-separable
μ ML, ML-separability
[J, Kołodziejski, 2024]

- ML-definability of $\mu \mathrm{ML}$ formula is ExpTime-complete
- ML-separability is ExpTime-complete, also over finite/infinite trees
- ML-separability over words is PSpace-complete

COMPUTING SEPARATORS

One contribution is computation of separating formula

Strategy

1. $\varphi, \varphi^{\prime}$ ML-separable \Rightarrow separable by formula of depth $\ell \in O\left(2^{|\varphi|+\left|\varphi^{\prime}\right|}\right)$
2. compute ℓ-universal consequence θ of φ :
uniform interpolant for ML formulas up to depth ℓ
essentially by reading it off from \mathscr{A}_{φ} :
θ describes behaviour of \mathscr{A}_{φ} up to depth ℓ

Consequence If any, there is a separator of size $2^{2^{n}}$, and this is optimal.

COMPUTING INTERPOLANTS

Might be most interesting from practical perspective, but:

Bad news our computation algorithm inspired by one for ML does not work (and currently we don't know how to fix it :-/)

Conjecture price of elegant characterization via joint realizability is loss of constructability (compactness!)

Way forward show bound on the quantifier depth ℓ of the potential interpolant

- bound is trivial for ML with constants / inclusion constraints, but not under ontologies and not for GF/FO³
- brutal way disjunction over all types of depth $\ell \Rightarrow$ non-elementary
- alternative automata-based construction?

CONCLUSION

Take-home message

- non-uniform approach to interpolation / explicit definability
\Rightarrow decide in each case when an interpolant / explicit definition exists
- Interpolant / definition existence usually harder than satisfiability but often decidable

Challenges

- computation problem
- investigate other logics without CIP, e.g. for $\mathrm{FO}^{2}+$ counting
- other areas?
- investigate separability / definability

THANK YOU VERY MUCH!

QUESTIONS?

