
Synthesizing Strongly Equivalent Logic Programs:

Beth Definability for Answer Set Programs

via Craig Interpolation in First-Order Logic

Jan Heuer and Christoph Wernhard

University of Potsdam

CIBD Workshop

Amsterdam, April 23, 2024

1



Answer Set Programming with the Stable Model Semantics – A Non-Monotonic KR Approach

A logic program is a set of rules of the form

A1; . . . ;Ak;not Ak+1; . . . ;not Al ← Al+1, . . . , Am,not Am+1, . . . ,not An

I.e., we consider disjunctive logic programs with negation in the head

Atoms can have argument terms built from variables, constants and function symbols

An answer set solver computes the answer sets (stable models [Gelfond/Lifschitz 1988]) of a given program

These are minimal Herbrand models in which all facts are properly justified in a non-circular way

2

fly(X) ← bird(X),not ab(X)
ab(X) ← penguin(X)
bird(X) ← penguin(X)
bird(tweety)
penguin(skippy)

{penguin(skippy), bird(tweety), bird(skippy), ab(skippy), fly(tweety)}

a ← not b

b ← not c

d

{d, b}

p ← a

a ← not b

b ← not a

{p, a}, {b}

p ← p

q ← not p

{q}



Strong Equivalence of Answer Set Programs

Definition. [Lifschitz/Pearce/Valverde 2001]

Programs P and Q are strongly equivalent iff

for all programs R it holds that P ∪R andQ ∪R have the same answer sets

Justifies replacability of a subset of the rules of a program such that its overall semantics,

the set of answer sets or stable models, is preserved

p ← not q p
Equivalent: both have the same single answer set {p}
But not strongly equivalent: if we add q we get {q} and {p, q}, rsp.

p ← q

q

p

q
These are strongly equivalent

p ← q,not q Strongly equivalent to the empty program

3



Strong Equivalence can be Represented as Classical First-Order Equivalence

For each program predicate p we have two logic predicates p
0
, p

1
, reflecting a modal logic with two states

Definition (here by example). For a rule

R = p(X);not q(X) ← r(X),not s(X)
define

γ
0
(R) def

= ∀x (r
0
(x) ∧ ¬s

1
(x) → p

0
(x) ∨ ¬q

1
(x))

γ
1
(R) def

= ∀x (r
1
(x) ∧ ¬s

1
(x) → p

1
(x) ∨ ¬q

1
(x))

For a program P define

γ(P ) def
= ⋀R∈P γ

0
(R) ∧⋀R∈P γ

1
(R)

For a program P define

SP
def
= ⋀p∈Pred(P ) ∀x(p

0
(x) → p

1
(x))

Proposition. [Lin 2002, Pearce/Tompits/Woltran 2009, Fer-

raris/Lee/Lifschitz 2011, Heuer 2020]

Programs P and Q are strongly equivalent iff

SP∪Q ∧ γ(P ) ≡ SP∪Q ∧ γ(Q)

4



Our Objective: Craig and Projective Beth for Logic Programs

Task. For given programs P,Q and vocabulary V (a set of predicates)

find a program R in V s.th.

P ∪R is strongly equivalent to P ∪Q

We consider strong equivalence wrt. a “background program” P , which may be empty

R in V and for all programs S it holds that S ∪ P ∪Q and S ∪ P ∪R have the same answer sets

Available Tools

The γ encoding of programs to express strong equivalence as a first-order equivalence

Construction of a first-order definition by Craig interpolation, also practically by first-order ATP systems

Our Approach

1. Develop a first-order criterion to check whether a formula encodes a logic program

2. Develop a method to decode a formula that encodes a program into a program, up to strong equivalence

3. Develop a variation of Craig-Lyndon interpolation for formulas that encode logic programs

4. On its basis, show a projective Beth theorem for logic programs

• Its inherits effectivity from Craig-Lyndon interpolation (also practical implementations)

• Its effective version realizes the above task

5. A refinement gives some control on allowed rule components (head, body, positive, negated) of predicates inR
5



Decoding First-Order Encoded Logic Programs up to Strong Equivalence

Definition. rename0↦1(F ) is F with 0-superscripted predicates p
0
replaced by

the corresponding 1-superscripted predicates p
1

rename0↦1 preserves entailment and thus also equivalence:

If F ⊧ G, then rename0↦1(F ) ⊧ rename0↦1(G)
If F ≡ G, then rename0↦1(F ) ≡ rename0↦1(G)

Definition. F encodes a program iff F is universal and F ∧ SF ⊧ rename0↦1(F )

Theorem: Formulas Encoding a Logic Program.

(i) For all programs P : γ(P ) encodes a program

(ii) If F encodes a program, then there is a program P s.th.

(1) SF ⊧ γ(P ) ↔ F

(2) Pred (P ) ⊆ Pred
LP

(F )

(3) Fun(P ) ⊆ Fun(F )

Moreover, such a program P can be effectively constructed from F

6



LP-Interpolation – A Refinement of Craig Interpolation for Logic Programs

Definition. A Craig-Lyndon interpolant of F and G s.th. F ⊧ G is a formulaH s.th.

1. F ⊧ H

2. H ⊧ G

3. Voc(H) ⊆ Voc(F ) ∩ Voc(G), taking also polarity of predicate occurrences into account

Theorem: LP-Interpolation. Let F encode a logic program, and letG be s.th. Fun(F ) ⊆ Fun(G) and
SF ∧ F ⊧ SG → G

Then there exists a first-order formulaH , the LP-interpolant of F and G, s.th.

1. SF ∧ F ⊧ H

2. H ⊧ SG → G

3. Pred
±
(H) ⊆ S ∪ {+p

1
∣ +p

0
∈ S} ∪ {−p

1
∣ −p

0
∈ S}, where S = Pred

±
(SF ∧ F ) ∩ Pred

±
(SG → G)

4. Fun(H) ⊆ Fun(F )
5. H encodes a logic program

Moreover, such anH can be effectively constructed from a proof of SF ∧ F ⊧ SG → G

Proof. LetH
′
be a Craig-Lyndon interpolant of SF ∧F and SG → G. DefineH

def
= H

′
∧ rename0↦1(H

′
)

7



Effective Projective Definability of Logic Programs

Theorem: Effective Projective Definability of Logic Programs.

Let P and Q be programs and let V ⊆ Pred (P ) ∪ Pred (Q) be a set of predi-

cates. The existence of a program R s.th.

1. Pred (R) ⊆ V

2. Fun(R) ⊆ Fun(P ) ∪ Fun(Q)
3. P ∪R and P ∪Q are strongly equivalent

is expressible as entailment between two first-order formulas

Moreover, if for given P,Q, V a programRwith these properties exists, such

a program can be effectively constructed from a proof of the entailment

Proof. The entailment that characterizes existence of a logic program R is

SP ∧ SQ ∧ γ(P ) ∧ γ(Q) ⊧ ¬SP ′ ∨ ¬SQ′ ∨ ¬γ(P
′
) ∨ γ(Q

′
),

where the primed P
′
andQ

′
are like P andQ, except that predicates not in V

are replaced by fresh predicates

If the entailment holds, we can construct a programR as follows: LetH be the

LP-interpolant of γ(P ) ∧ γ(Q) and ¬γ(P
′
) ∨ γ(Q

′
) and extract the programR

fromH with our procedure

8



Effective Projective Definability of Logic Programs – Basic Examples

For given P,Q, V , find a program R s.th.

1. Pred (R) ⊆ V

2. Fun(R) ⊆ Fun(P ) ∪ Fun(Q)
3. P ∪R and P ∪Q are strongly equivalent

Q = p ← q, r

p; q ← r

q ← q, s

R = p ← r

V = {p, r}

P = p(X) ← q(X) Q = r(X) ← p(X)
r(X) ← q(X)

R = r(X) ← p(X)

V = {p, r}

P = ← p(X), q(X) Q = r(X) ← p(X),not q(X)

R = r(X) ← p(X)

V = {p, r}

9



Effective Projective Definability of Logic Programs – “Schema Mapping” Examples

For given P,Q, V , find a program R s.th.

1. Pred (R) ⊆ V

2. Fun(R) ⊆ Fun(P ) ∪ Fun(Q)
3. P ∪R and P ∪Q are strongly equivalent

P = p(X) ← q(X),not r(X)
p(X) ← s(X)
not r(X); s(X) ← p(X)
q(X); s(X) ← p(X)

Q = t(X) ← p(X)

R = t(X) ← q(X),not r(X)
t(X) ← s(X)

V = {q, r, s, t}

Idea: P expresses a schema mapping from client predicate p to knowledge base predicates q, r, s

The result R is a rewriting of the client queryQ in terms of knowledge base predicates

Only the first two rules of P actually describe the mapping, the other two complete them

P = As above Q = t(X) ← q(X),not r(X)
t(X) ← s(X)

R = t(X) ← p(X)

V = {p, t}

While the first example realizes unfolding of p, the second realizes folding into p
10



Constraining Positions of Predicates within Rules

Corollary: Position-Constrained Effective Projective

Definability of Logic Programs. Our definability theorem

holds in a strengthened variation where three sets

V+, V+1, V− of predicates are given to the effect that a

predicate p can occur in the respective component of a rule

of R only if it is a member of a set of predicates according

to the following table

p is allowed in only if p is in

Positive heads V+
Negative bodies V+ ∪ V+1
Negative heads V−
Positive bodies V−

11

P = p ← q Q = r ← p

r ← q

q ← s

R = r ← p

q ← s

V+ = {p, q, r, s}
V+1 = {}
V− = {p, r, s}

P = p ← q Q =← q,not p

r ← q

s ← p

R = r ← q

s ← p

V+ = {q, r, s}
V+1 = {}
V− = {p, q, r, s}

P = p ← q

r ← p

Q = s ← not r

r ← q

R = s ← not r

V+ = {s}
V+1 = {r}
V− = {p, q, r, s}



Prototypical Implementation

Implemented in the PIE (Proving, Interpolating, Eliminating) environment [W 2016],

embedded in SWI-Prolog

Options for Craig interpolation, may lead to different solutions

• CMProver (clausal tableaux/connection method, included in PIE)

+ interpolation for clausal tableaux [W 2021]

• CMProver

+ proof translation to preserve range restriction [W 2023]

+ interpolation for clausal tableaux [W 2021]

• Prover9

+ resolution proof translation [W 2023]

+ interpolation for clausal tableaux [W 2021]

Vocabularies may also be specified complementary,

like “forgetting”

12



Prototypical Implementation – Screenshot with Proof

13



Related Work, Some Open Issues, Desiderata

Related Work

Craig interpolation and Beth for equilibrium logic with existential results

[Gabbay/Pearce/Valverde 2011, Pearce/Valverde 2012]

Maybe related: works on forgetting in ASP

Potential Generalizations and Refinements

Disallowing constants or function symbols

– but Craig interpolation introduces existential quantifiers for “left-only” such symbols

Safety (roughly: all variables of a rule have an occurence in the positive body)

– related to range-restriction [W 2023]

Arithmetics, theories, aggregation – current topics in verification of strong equivalence

Restrictions on rule form (e.g. no negative head, a single positive head) – related to Horn [W 2023]

Transfer to completion-based program encodings

Hidden predicates (which may have an arbitrary extension in R) – relative equivalence [Lin 2002], projected

answer sets [Eiter et al. 2005], external behavior [Fandinno et al. 2023]

“Schema mappings” with the involved completion, possibly related to [Toman/Wedell 2023]

More

Applying the first-order coding/decoding to program simplification

Is the general approach applicable elsewhere, e.g., robustness under replacement?
14



Conclusion – Generalizing Summary

Task. For given programs P,Q and vocabulary V (a set of predicates)

find a program R in V s.th.

P ∪R is strongly equivalent to P ∪Q

An equivalence notion in the target logic (strong equivalence), expressible as classical first-order equivalence

• Target expressions are encoded as classical representation of a logic with two states (p
0
, p

1
for each p)

• The classical equivalence is modulo specific axioms (p
0
→ p

1
)

Encoded target expressions can be decoded, modulo the equivalence notion, without enriching the vocabulary

Craig interpolation on encoded target expressions plus postprocessing yields an encoded target expression

Together with the decoding we obtain a projective Beth property for the target logic

I.e. we can synthesize target expressions R from given target expressions P,Q and vocabulary V

Effectivity, even practical, is inherited from Craig interpolation

15



16



Craig Interpolation and Beth Definability in a Nutshell

Definition. FormulaQx is implicitly definable in terms of vocabulary V within sentenceK iff

K ∧K
′
⊧ ∀x (Qx ↔ Q

′
x), (ImpDef)

whereK
′
and Q

′
are copies ofK and Q with all symbols not in V replaced by fresh symbols

(ImpDef) says that if two models ofK agree on values of symbols in V , then they agree on the extension ofQ

Definition. FormulaQx is explicitly definable in terms of vocabulary V within sentenceK iff

there exists a formula Rx in the vocabulary V s.th. K ⊧ ∀x (Qx ↔ Rx) (ExpDef)

Definition. A Craig interpolant of F and G s.th. F ⊧ G is a formulaH s.th.

1. F ⊧ H

2. H ⊧ G

3. The vocabulary ofH is in the common vocabulary of F andG

[Craig 1957] In first-order logicH exists and can be extracted from a proof of F ⊧ G

[Beth 1953] In first-order logic (ImpDef) and (ExpDef) are equivalent

Proof of [Beth]. Write (ImpDef) asK ∧Qx ⊧ K
′
→ Q

′
x

Obtain Rx as Craig interpolant ofK ∧Qx andK
′
→ Q

′
x

17

K ⊧ ∀x (Qx ↔ Rx)
K ⊧ Qx → Rx K ⊧ Rx → Qx

K ∧Qx ⊧ Rx ⊧ K
′
→ Q

′
x



References I

[Baral, 2010] Baral, C. (2010).

Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press.

[Delgrande, 2017] Delgrande, J. P. (2017).

A knowledge level account of forgetting.

JAIR, 60:1165–1213.

[Eiter et al., 2005] Eiter, T., Tompits, H., and Woltran, S. (2005).

On solution correspondences in answer-set programming.

In Kaelbling, L. P. and Saffiotti, A., editors, IJCAI-05, pages 97–102. Professional Book Center.

[Fandinno et al., 2023] Fandinno, J., Hansen, Z., Lierler, Y., Lifschitz, V., and Temple, N. (2023).

External behavior of a logic program and verification of refactoring.

Theory Pract. Log. Program., 23(4):933–947.

[Fandinno and Lifschitz, 2023] Fandinno, J. and Lifschitz, V. (2023).

On Heuer’s procedure for verifying strong equivalence.

In Gaggl, S. A., Martinez, M. V., and Ortiz, M., editors, JELIA 2023, volume 14281 of LNCS, pages 253–261. Springer.

18



References II

[Ferraris et al., 2011] Ferraris, P., Lee, J., and Lifschitz, V. (2011).

Stable models and circumscription.

Artif. Intell., 175(1):236–263.

[Gabbay et al., 2011] Gabbay, D. M., Pearce, D., and Valverde, A. (2011).

Interpolable formulas in equilibrium logic and answer set programming.

JAIR, 42:917–943.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988).

The stable model semantics for logic programming.

In Kowalski, R. A. and Bowen, K. A., editors, ICLP/SLP, pages 1070–1080, Cambridge, MA. MIT Press.

[Gonçalves et al., 2023] Gonçalves, R., Knorr, M., and Leite, J. (2023).

Forgetting in answer set programming - A survey.

Theory Pract. Log. Program., 23(1):111–156.

[Heuer, 2020] Heuer, J. (2020).

Automated verification of equivalence properties in advanced logic programs.

Bachelor’s thesis, University of Potsdam.

19



References III

[Heuer, 2023] Heuer, J. (2023).

Automated verification of equivalence properties in advanced logic programs.

In Schwarz, S. and Wenzel, M., editors,WLP 2023.

[Heuer and Wernhard, 2024] Heuer, J. and Wernhard, C. (2024).

Synthesizing strongly equivalent logic programs: Beth definability for answer set programs via Craig interpolation in
first-order logic.

In Benzmüller, C., Heule, M., and Schmidt, R., editors, IJCAR 2024, LNCS (LNAI). Springer.

To appear, preprint: https://arxiv.org/abs/2402.07696.

[Lifschitz, 2010] Lifschitz, V. (2010).

Thirteen definitions of a stable model.

In Blass, A., Dershowitz, N., and Reisig, W., editors, Fields of Logic and Computation, Essays Dedicated to Yuri Gurevich on the
Occasion of His 70th Birthday, volume 6300 of LNCS, pages 488–503. Springer.

[Lifschitz, 2019] Lifschitz, V. (2019).

Answer Set Programming.

Springer.

20

https://arxiv.org/abs/2402.07696


References IV

[Lifschitz et al., 2001] Lifschitz, V., Pearce, D., and Valverde, A. (2001).

Strongly equivalent logic programs.

ACM Trans. Comp. Log., 2(4):526–541.

[Lin, 2002] Lin, F. (2002).

Reducing strong equivalence of logic programs to entailment in classical propositional logic.

In KR-02, pages 170–176. Morgan Kaufmann.

[McCune, 2010] McCune, W. (2005–2010).

Prover9 and Mace4.

http://www.cs.unm.edu/~mccune/prover9, accessed Feb 5, 2024.

[Pearce et al., 2009] Pearce, D., Tompits, H., and Woltran, S. (2009).

Characterising equilibrium logic and nested logic programs: Reductions and complexity.

Theory Pract. Log. Program., 9(5):565–616.

[Pearce and Valverde, 2012] Pearce, D. and Valverde, A. (2012).

Synonymous theories and knowledge representations in answer set programming.

J. Comput. Syst. Sci., 78(1):86–104.

21

http://www.cs.unm.edu/~mccune/prover9


References V

[Toman and Weddell, 2022] Toman, D. and Weddell, G. E. (2022).

First order rewritability in ontology-mediated querying in horn description logics.

In AAAI 2022, IAAI 2022, EAAI 2022, pages 5897–5905. AAAI Press.

[Wernhard, 2016] Wernhard, C. (2016).

The PIE system for proving, interpolating and eliminating.

In Fontaine, P., Schulz, S., and Urban, J., editors, PAAR 2016, volume 1635 of CEURWorkshop Proc., pages 125–138.
CEUR-WS.org.

[Wernhard, 2021] Wernhard, C. (2021).

Craig interpolation with clausal first-order tableaux.

J. Autom. Reasoning, 65(5):647–690.

[Wernhard, 2023] Wernhard, C. (2023).

Range-restricted and Horn interpolation through clausal tableaux.

In Ramanayake, R. and Urban, J., editors, TABLEAUX 2023, volume 14278 of LNCS (LNAI), pages 3–23. Springer.

22


